cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A026007 Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0

Views

Author

Keywords

Comments

In general, for t > 0, if g.f. = Product_{m>=1} (1 + t*q^m)^m then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (t+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(t) + log(t)^3 - 6*polylog(3, -1/t). - Vaclav Kotesovec, Jan 04 2016

Examples

			For n = 4, we have 8 partitions
  01: [4]
  02: [4']
  03: [4'']
  04: [4''']
  05: [3, 1]
  06: [3', 1]
  07: [3'', 1]
  08: [2, 2']
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          add((-1)^(n/d+1)*d^2, d=divisors(n))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
  • PARI
    N=66; q='q+O('q^N);
    gf= prod(n=1,N, (1+q^n)^n );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

a(n) = (1/n)*Sum_{k=1..n} A078306(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
G.f.: Product_{m>=1} (1+x^m)^m. Weighout transform of natural numbers (A000027). Euler transform of A026741. - Franklin T. Adams-Watters, Mar 16 2006
a(n) ~ zeta(3)^(1/6) * exp((3/2)^(4/3) * zeta(3)^(1/3) * n^(2/3)) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where zeta(3) = A002117. - Vaclav Kotesovec, Mar 05 2015

A026011 Expansion of Product_{m>=1} (1 + q^m)^(2*m).

Original entry on oeis.org

1, 2, 5, 14, 30, 68, 145, 298, 600, 1182, 2280, 4318, 8064, 14824, 26917, 48292, 85675, 150466, 261762, 451328, 771739, 1309362, 2205109, 3687904, 6127155, 10116074, 16602508, 27093582, 43974355, 71003224
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=2 of A277938.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ Zeta(3)^(1/6) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/2) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A027346 Expansion of Product_{m>=1} (1 + q^m)^(3*m).

Original entry on oeis.org

1, 3, 9, 28, 72, 183, 443, 1026, 2313, 5072, 10860, 22767, 46862, 94806, 188886, 371068, 719493, 1378449, 2611540, 4896291, 9090651, 16723930, 30501744, 55177932, 99048719, 176500572, 312330813, 549033172
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A277938.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(3*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ exp(2^(-4/3) * 3^(5/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(11/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(3*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A341386 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^4.

Original entry on oeis.org

1, 8, 44, 184, 662, 2120, 6256, 17276, 45277, 113568, 274592, 643220, 1465838, 3260428, 7097338, 15153288, 31791822, 65645360, 133584864, 268213400, 531879490, 1042657088, 2022113788, 3882468712, 7384455791, 13921287616, 26026092198, 48273051172, 88868177735
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..32);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 32; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &

A261389 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(3*k).

Original entry on oeis.org

1, 6, 30, 128, 486, 1704, 5604, 17484, 52206, 150118, 417696, 1128984, 2973476, 7650720, 19272432, 47616568, 115570014, 275921460, 648771802, 1503889488, 3439990344, 7770915816, 17349229908, 38306180052, 83694778556, 181052778078, 387976101432, 823939048560
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A255610 and A027346.
In general, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(t*k) and t>=1, then a(n) ~ exp(t/12 + 3/2 * (7*t*Zeta(3)/2)^(1/3) * n^(2/3)) * t^(1/6 + t/36) * (7*Zeta(3))^(1/6 + t/36) / (A^t * 2^(2/3 + t/9) * sqrt(3*Pi) * n^(2/3 + t/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Cf. A156616 (t=1), A261386 (t=2).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/4 + 3/2 * (21*Zeta(3)/2)^(1/3) * n^(2/3)) * (7*Zeta(3)/3)^(1/4) / (2 * A^3 * sqrt(Pi) * n^(3/4)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A277938 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1+x^j)^(j*k) in powers of x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 8, 0, 1, 5, 14, 28, 30, 16, 0, 1, 6, 20, 48, 72, 68, 28, 0, 1, 7, 27, 75, 141, 183, 145, 49, 0, 1, 8, 35, 110, 245, 396, 443, 298, 83, 0, 1, 9, 44, 154, 393, 751, 1058, 1026, 600, 142, 0, 1, 10, 54, 208
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2017

Keywords

Examples

			Square array begins:
   1, 1,  1,  1,   1, ...
   0, 1,  2,  3,   4, ...
   0, 2,  5,  9,  14, ...
   0, 5, 14, 28,  48, ...
   0, 8, 30, 72, 141, ...
		

Crossrefs

Columns k=0-4 give: A000007, A026007, A026011, A027346, A027906.
Rows n=0-3 give: A000012, A001477, A000096, A005586.
Main diagonal gives A270922.
Antidiagonal sums give A299167.

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^(j*k).

A279411 Expansion of Product_{k>0} 1/(1 + x^k)^(k*4).

Original entry on oeis.org

1, -4, 2, 0, 23, -20, 2, -88, 63, -96, 318, -104, 626, -844, 504, -2472, 1525, -3704, 6184, -4288, 15284, -10736, 23254, -35792, 30228, -84544, 60974, -139240, 176658, -190108, 418940, -320976, 755332, -773524, 1111678, -1847304, 1669046, -3634296
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2017

Keywords

Crossrefs

Column k=4 of A279928.
Product_{k>0} 1/(1 + x^k)^(k*m): A027906 (m=-4), A255528 (m=1), A278710 (m=2), A279031 (m=3), this sequence (m=4), A279932 (m=5).

Formula

a(n) ~ (-1)^n * exp(-1/3 + 3/2 * Zeta(3)^(1/3) * n^(2/3)) * A^4 * Zeta(3)^(1/18) / (sqrt(6*Pi) * n^(5/9)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017
G.f.: exp(4*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Mar 27 2018

A279932 Expansion of Product_{k>0} 1/(1 + x^k)^(k*5).

Original entry on oeis.org

1, -5, 5, 0, 30, -51, 5, -130, 220, -125, 649, -605, 870, -2695, 1565, -4852, 7915, -6360, 20625, -17880, 33551, -61015, 50865, -138510, 135485, -224725, 389025, -359610, 849525, -838970, 1417404, -2195205, 2275690, -4756040, 4657940, -8315123, 11174840, -13352315
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2017

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017

Crossrefs

Column k=5 of A279928.
Product_{k>0} 1/(1 + x^k)^(k*m): A027906 (m=-4), A255528 (m=1), A278710 (m=2), A279031 (m=3), A279411 (m=4), this sequence (m=5).

Formula

a(n) ~ (-1)^n * exp(-5/12 + 3 * 2^(-5/3) * (5*Zeta(3))^(1/3) * n^(2/3)) * A^5 * (5*Zeta(3))^(1/36) / (2^(5/9) * sqrt(3*Pi) * n^(19/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017
G.f.: exp(5*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Mar 27 2018
Showing 1-8 of 8 results.