cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A255528 G.f.: Product_{k>=1} 1/(1+x^k)^k.

Original entry on oeis.org

1, -1, -1, -2, 1, 0, 4, 2, 8, -2, 4, -11, -1, -25, -5, -35, 13, -26, 49, -6, 110, 6, 159, -23, 182, -141, 129, -358, 62, -640, 39, -897, 237, -1013, 771, -914, 1793, -664, 3143, -565, 4635, -1157, 5727, -3119, 6121, -7041, 5642, -13088, 5097, -20758, 5879
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017

Crossrefs

Cf. A278710 (m=2), A279031 (m=3), A279411 (m=4), A279932 (m=5).

Programs

  • Maple
    with(numtheory): A000219:=proc(n) option remember; if n = 0 then 1 else add(sigma[2](k)*A000219(n-k), k = 1..n)/n fi: end: A073592:=proc(n) option remember; if n = 0 then 1 else -add(sigma[2](k)*A073592(n-k), k = 1..n)/n fi: end: a:=proc(n); add(A073592(n-2*m)*A000219(m), m = 0..floor(n/2)): end: seq(a(n), n = 0..50); # Vaclav Kotesovec, Mar 09 2015
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1+x^k)^k,{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    {a(n) = if(n<0, 0, polcoeff(exp(sum(k=1, n, (-1)^k * x^k / (1-x^k)^2 / k, x*O(x^n))), n))}
    for(n=0, 100, print1(a(n), ", "))

Formula

a(n) ~ (-1)^n * A * Zeta(3)^(5/36) * exp(3*Zeta(3)^(1/3)*n^(2/3)/2^(5/3) - 1/12) / (2^(7/9) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 29 2015
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078306(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A262811 Expansion of Product_{k>=1} 1/(1-x^(2*k-1))^(2*k-1).

Original entry on oeis.org

1, 1, 1, 4, 4, 9, 15, 22, 37, 56, 92, 133, 210, 310, 466, 696, 1013, 1495, 2160, 3141, 4495, 6462, 9172, 13024, 18387, 25840, 36213, 50500, 70280, 97302, 134522, 185105, 254245, 347938, 475036, 646676, 878145, 1189468, 1607095, 2166672, 2913794, 3910741
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 03 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(d::even, 0, d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Oct 05 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(-1/12 + 3*Zeta(3)^(1/3)*n^(2/3)/2) * A * Zeta(3)^(5/36) / (2^(2/3) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A050999(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 09 2017

A285069 Expansion of Product_{k>=1} (1 - x^(2*k-1))^(2*k-1).

Original entry on oeis.org

1, -1, 0, -3, 3, -5, 8, -10, 22, -25, 41, -57, 88, -126, 168, -261, 351, -512, 685, -984, 1357, -1865, 2566, -3485, 4838, -6459, 8832, -11831, 16056, -21404, 28660, -38259, 50875, -67613, 89161, -118184, 155321, -204609, 267708, -351125, 458331, -597740
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2017

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[(1 - x^(2k-1))^(2k-1), {k, 50}], {x, 0, 50}], x] (* Indranil Ghosh, Apr 09 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sumdiv(k, d, d^2*(d%2))*x^k/k))) \\ Seiichi Manyama, Oct 31 2017

Formula

a(n) = (-1)^n * A262736(n).
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A050999(k)*a(n-k) for n > 0.
a(n) ~ (-1)^n * exp(3^(4/3) * (Zeta(3))^(1/3) * n^(2/3) / 2^(5/3)) * Zeta(3)^(1/6) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Nov 09 2017

A262924 Expansion of Product_{k>=1} (1 + x^(3*k-1))^(3*k-1) * (1 + x^(3*k-2))^(3*k-2).

Original entry on oeis.org

1, 1, 2, 2, 5, 10, 13, 25, 35, 57, 87, 134, 211, 306, 458, 684, 996, 1465, 2129, 3073, 4411, 6288, 8977, 12707, 17913, 25185, 35231, 49078, 68228, 94490, 130408, 179425, 246121, 336681, 459239, 624842, 847986, 1147728, 1549773, 2087972, 2806455, 3764136
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Comments

Convolution of A262948 and A262949.

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1 + x^(3*k-1))^(3*k-1)*(1 + x^(3*k-2))^(3*k-2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3*Zeta(3)^(1/3)*n^(2/3)/2) * Zeta(3)^(1/6) / (2^(1/3) * sqrt(3*Pi) * n^(2/3)).

A284628 Expansion of Product_{k>=1} 1/(1+x^(2*k-1))^(2*k-1).

Original entry on oeis.org

1, -1, 1, -4, 4, -9, 15, -22, 37, -56, 92, -133, 210, -310, 466, -696, 1013, -1495, 2160, -3141, 4495, -6462, 9172, -13024, 18387, -25840, 36213, -50500, 70280, -97302, 134522, -185105, 254245, -347938, 475036, -646676, 878145, -1189468, 1607095, -2166672, 2913794
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1+x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 15 2017 *)

Formula

a(n) = (-1)^n * A262811(n).

A291649 Expansion of Product_{k>=1} (1 + x^(k^2))^(k^2).

Original entry on oeis.org

1, 1, 0, 0, 4, 4, 0, 0, 6, 15, 9, 0, 4, 40, 36, 0, 17, 71, 90, 36, 64, 100, 180, 144, 96, 274, 394, 300, 148, 740, 820, 480, 472, 1150, 1851, 1341, 1146, 1318, 3880, 3540, 1704, 3017, 6455, 7134, 3780, 7822, 9574, 12180, 10304, 12057, 19750, 22485, 20558, 15910, 43076, 43236, 31104, 33742, 66895
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 28 2017

Keywords

Comments

Number of partitions of n into distinct squares, where k^2 different parts of size k^2 are available (1a, 4a, 4b, 4c, 4d, ...).

Examples

			a(8) = 6 because we have [4a, 4b], [4a, 4c], [4a, 4d], [4b, 4c], [4b, 4d] and [4c, 4d].
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^k^2)^k^2, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; s = 1 + x; Do[s *= Sum[Binomial[k^2, j]*x^(j*k^2), {j, 0, Floor[nmax/k^2] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 28 2017 *)

Formula

G.f.: Product_{k>=1} (1 + x^A000290(k))^A000290(k).
a(n) ~ exp(5 * 2^(-9/5) * 3^(-3/5) * (9-4*sqrt(2))^(1/5) * Pi^(1/5) * Zeta(5/2)^(2/5) * n^(3/5)) * 3^(1/5) * (2*sqrt(2)-1)^(1/5) * Zeta(5/2)^(1/5) / (2^(9/10) * sqrt(5) * Pi^(2/5) * n^(7/10)). - Vaclav Kotesovec, Aug 29 2017

A262948 Expansion of Product_{k>=1} (1 + x^(3*k-1))^(3*k-1).

Original entry on oeis.org

1, 0, 2, 0, 1, 5, 0, 10, 8, 5, 26, 11, 28, 62, 24, 101, 111, 77, 260, 202, 268, 583, 382, 761, 1165, 847, 1940, 2198, 2061, 4346, 4084, 5078, 9039, 7844, 11978, 17620, 15721, 26648, 33219, 32894, 56000, 61494, 69653, 111884, 114265, 146557, 214864, 214967
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1 + x^(3*k-1))^(3*k-1),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(3 * 2^(-4/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(7/12) * sqrt(3*Pi) * n^(2/3)).

A285292 Expansion of Product_{k>=1} (1 + x^k)^k / (1 + x^(4*k))^(4*k).

Original entry on oeis.org

1, 1, 2, 5, 4, 12, 20, 29, 53, 80, 127, 199, 311, 468, 715, 1079, 1621, 2402, 3541, 5210, 7574, 11046, 15926, 22917, 32804, 46766, 66419, 93936, 132331, 185830, 260144, 362752, 504573, 699376, 966842, 1332721, 1832217, 2512209, 3435932, 4687884, 6380911
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k)^k/(1+x^(4*k))^(4*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3^(5/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2^(3/4) * 3^(1/6) * sqrt(Pi) * n^(2/3)).

A284467 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(2*k-1)/(1 + x^(2*k))^(2*k).

Original entry on oeis.org

1, 1, -2, 1, 2, -2, 0, -5, 10, 1, -15, 10, -1, 18, -39, 4, 50, -24, -14, -69, 165, -70, -83, -20, 154, 161, -550, 313, 55, 410, -960, 102, 1074, -406, -506, -1344, 3581, -1791, -833, -1833, 4995, 205, -6993, 2982, 2461, 7649, -19791, 9495, 4986, 9581, -26745, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    P:= mul((1+x^(2*k-1))^(2*k-1)/(1+x^(2*k))^(2*k),k=1..N/2):
    S:= series(P,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Apr 16 2017
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1))^(2*k-1)/(1 + x^(2*k))^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 15 2017 *)

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 + x^k)^2)). - Ilya Gutkovskiy, Jun 20 2018

A285288 Expansion of Product_{k>=0} (1 + x^(4*k+1))^(4*k+1).

Original entry on oeis.org

1, 1, 0, 0, 0, 5, 5, 0, 0, 9, 19, 10, 0, 13, 58, 55, 10, 17, 118, 191, 95, 26, 223, 512, 400, 116, 362, 1175, 1329, 564, 609, 2368, 3593, 2218, 1246, 4402, 8600, 7118, 3433, 7792, 18503, 19778, 10702, 13924, 37009, 49017, 32097, 27141, 69629, 111251, 88972
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2017

Keywords

Crossrefs

Product_{k>=0} (1 + x^(m*k+1))^(m*k+1): A262736 (m=2), A262949 (m=3), this sequence (m=4).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(4*k-3))^(4*k-3), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Apr 16 2017 *)

Formula

a(n) = (-1)^n * A285070(n).
a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2^(23/24) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Apr 16 2017
Showing 1-10 of 16 results. Next