cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A291655 Expansion of Product_{k>=1} 1/(1-x^(k^2))^(k^2).

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 5, 5, 15, 24, 24, 24, 44, 80, 80, 80, 131, 221, 266, 266, 386, 566, 746, 746, 990, 1474, 1924, 2089, 2529, 3709, 4609, 5269, 6130, 8576, 11096, 12746, 14937, 19397, 25697, 28997, 34111, 43135, 56365, 65905, 76219, 95770, 120070, 144370, 163661
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(k^2))^(k^2), {k,1,nmax}], {x,0,nmax}], x]

Formula

log(a(n)) ~ 5 * Pi^(1/5) * Zeta(5/2)^(2/5) * n^(3/5) / (2^(6/5) * 3^(3/5)).

A291692 Expansion of Product_{k>=1} (1+x^(k^3))^(k^3).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 28, 28, 0, 0, 0, 0, 0, 0, 56, 56, 0, 27, 27, 0, 0, 0, 70, 70, 0, 216, 216, 0, 0, 0, 56, 56, 0, 756, 756, 0, 0, 0, 28, 28, 0, 1512, 1512, 0, 351, 351, 8, 8, 0, 1890, 1890, 0, 2808, 2808, 65, 65, 0, 1512, 1512, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2017

Keywords

Comments

In general, if m > 0 and g.f. = Product_{k>=1} (1+x^(k^m))^(k^m), then a(n, m) ~ c * exp((2*m+1) * ((2^(1+1/m)-1) * Gamma(1/m) * Zeta(2+1/m))^(m/(2*m+1)) * n^((m+1)/(2*m+1)) / ((2*m+2)^((m+1)/(2*m+1)) * m^(3*m/(2*m+1)))) * ((2^(1+1/m)-1) * (m+1) * Gamma(1/m) * Zeta(2+1/m))^(m/(4*m+2)) / (sqrt(2*m+1) * sqrt(Pi) * 2^((3*m+2)/(4*m+2)) * m^((m-1)/(4*m+2)) * n^((3*m+1)/(4*m+2))), where c = 2^(-1/12) for m = 1 and c = 1 for m > 1.

Crossrefs

Cf. A026007 (m=1), A291649 (m=2).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(k^3))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; s = 1 + x; Do[s *= Sum[Binomial[k^3, j]*x^(j*k^3), {j, 0, Floor[nmax/k^3] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax]

Formula

a(n) ~ exp(7*((2^(4/3)-1) * Gamma(1/3) * Zeta(7/3))^(3/7) * n^(4/7) / (2^(12/7) * 3^(9/7))) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(7/3))^(3/14) / (2^(5/14) * 3^(1/7) * sqrt(7*Pi) * n^(5/7)).

A291666 Expansion of Product_{k>=1} ((1 + x^(k^2)) / (1 - x^(k^2)))^(k^2).

Original entry on oeis.org

1, 2, 2, 2, 10, 18, 18, 18, 50, 100, 118, 118, 206, 438, 582, 582, 806, 1606, 2344, 2506, 3122, 5322, 8202, 9498, 11130, 16844, 26110, 32272, 37018, 52274, 78018, 100098, 115986, 155026, 223190, 291674, 345132, 439518, 618734, 811790, 972846, 1204190, 1653726
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 29 2017

Keywords

Comments

Convolution of A291649 and A291655.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(k^2))/(1-x^(k^2)))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

log(a(n)) ~ 5 * Pi^(1/5) * ((8-sqrt(2)) * Zeta(5/2))^(2/5) * n^(3/5) / (4*3^(3/5)).

A291696 Expansion of Product_{k>=1} (1-x^(k^2))^(k^2).

Original entry on oeis.org

1, -1, 0, 0, -4, 4, 0, 0, 6, -15, 9, 0, -4, 40, -36, 0, -15, -39, 90, -36, 64, -28, -180, 144, -96, 206, 106, -300, 148, -540, 332, 480, -232, 610, -1029, -189, 114, -86, 1880, -1068, 24, -921, -1545, 2466, -300, 2858, -1514, -3180, 976, -4121, 5590, 1995
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1-x^(k^2))^(k^2), {k,1,nmax}], {x,0,nmax}], x]

A301518 a(n) = [x^n] Product_{k>=1} (1 + x^(k^2))^n.

Original entry on oeis.org

1, 1, 1, 1, 5, 26, 91, 246, 589, 1468, 4226, 13311, 41471, 122864, 351184, 1001876, 2920957, 8698612, 26070130, 77707056, 229959130, 679050870, 2011457295, 5986185690, 17866178695, 53343031301, 159149943668, 474683353849, 1416730630936, 4233405443596
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^(k^2))^n, {k, 1, n}], {x, 0, n}], {n, 0, 30}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 3.04074590736461391963643911... and c = 0.2268848664201836146769277...

A298850 Expansion of Product_{k>=1} (1 + x^(k*(k+1)/2))^(k*(k+1)/2).

Original entry on oeis.org

1, 1, 0, 3, 3, 0, 9, 9, 0, 19, 29, 10, 33, 63, 30, 66, 156, 90, 110, 300, 235, 276, 561, 465, 558, 1083, 1065, 1154, 1877, 1983, 2295, 3834, 3879, 3861, 6858, 7452, 7561, 12613, 13252, 13057, 22161, 25569, 24582, 35985, 44193, 44970, 63495, 79105, 77143, 104046, 134820, 138759, 182511, 222600
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[Product[(1 + x^(k (k + 1)/2))^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A000217(k))^A000217(k).
Showing 1-6 of 6 results.