cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A015128 Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 40, 64, 100, 154, 232, 344, 504, 728, 1040, 1472, 2062, 2864, 3948, 5400, 7336, 9904, 13288, 17728, 23528, 31066, 40824, 53408, 69568, 90248, 116624, 150144, 192612, 246256, 313808, 398640, 504886, 637592, 802936, 1008448
Offset: 0

Views

Author

Keywords

Comments

The over-partition function.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of jagged partitions of n.
According to Ramanujan (1913) a(n) is close to (cosh(x)-sinh(x)/x)/(4*n) where x=Pi*sqrt(n). - Michael Somos, Mar 17 2003
Number of partitions of 2n with all odd parts occurring with even multiplicities. There is no restriction on the even parts. Cf. A006950, A046682. - Mamuka Jibladze, Sep 05 2003
Number of partitions of n where there are two kinds of odd parts. - Joerg Arndt, Jul 30 2011. Or, in Gosper's words, partitions into red integers and blue odd integers. - N. J. A. Sloane, Jul 04 2016.
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras sp(n), n=0,1,2,3,... (the case n=0 being degenerate). A006950, this sequence and A000041 together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Also, number of 01-partitions of n. A 01-partition of n is a weakly decreasing sequence of m nonnegative integers n(i) such that sum(n(i))=n, n(m)>0, n(j)>=n(j+1)-1 and n(j)>=n(j+2). They are special cases of jagged partitions.
a(8n+7) is divisible by 64 (from Fortin/Jacob/Mathieu paper).
Smallest sequence of even numbers (except a(0)) which is the Euler transform of a sequence of positive integers. - Franklin T. Adams-Watters, Oct 16 2006
Convolution of A000041 and A000009. - Vladeta Jovovic, Nov 26 2002
Equals A022567 convolved with A035363. - Gary W. Adamson, Jun 09 2009
Equals the infinite product [1,2,2,2,...] * [1,0,2,0,2,0,2,...] * [1,0,0,2,0,0,2,0,0,2,...] * ... . - Gary W. Adamson, Jul 05 2009
Equals A182818 convolved with A010815. - Gary W. Adamson, Jul 20 2012
Partial sums of A211971. - Omar E. Pol, Jan 09 2014
Also 1 together with the row sums of A235790. - Omar E. Pol, Jan 19 2014
Antidiagonal sums of A284592. - Peter Bala, Mar 30 2017
The overlining method is equivalent to enumerating the k-subsets of the distinct parts of the i-th partition. - Richard Joseph Boland, Sep 02 2021

Examples

			G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 14*q^4 + 24*q^5 + 40*q^6 + 64*q^7 + 100*q^8 + ...
For n = 4 the 14 overpartitions of 4 are [4], [4'], [2, 2], [2', 2], [3, 1], [3', 1], [3, 1'], [3', 1'], [2, 1, 1], [2', 1, 1], [2, 1', 1], [2', 1', 1], [1, 1, 1, 1], [1', 1, 1, 1]. - _Omar E. Pol_, Jan 19 2014
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 103.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. See the function g(q).
  • James R. Newman, The World of Mathematics, Simon and Schuster, 1956, Vol. I p. 372.

Crossrefs

See A004402 for a version with signs.
Column k=2 of A321884.
Cf. A002513.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A015128List(len) = JacobiTheta4(len, -1)
    A015128List(40) |> println # Peter Luschny, Mar 12 2018
    
  • Maple
    mul((1+x^n)/(1-x^n),n=1..256): seq(coeff(series(%,x,n+1),x,n), n=0..40);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +2*add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2014
    a_list := proc(len) series(1/JacobiTheta4(0,x),x,len+1); seq(coeff(%,x,j),j=0..len) end: a_list(39); # Peter Luschny, Mar 14 2017
  • Mathematica
    max = 39; f[x_] := Exp[Sum[(DivisorSigma[1, 2*n] - DivisorSigma[1, n])*(x^n/n), {n, 1, max}]]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Jun 11 2012, after Joerg Arndt *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-1}, {}, x, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
    QP = QPochhammer; s = QP[q^2]/QP[q]^2 + O[q]^40; CoefficientList[s + O[q]^100, q] (* Jean-François Alcover, Nov 25 2015, after Michael Somos *)
    Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Nov 28 2015 *)
    (QPochhammer[-x, x]/QPochhammer[x, x] + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 12 2016 *)
    nmax = 100; p = ConstantArray[0, nmax+1]; p[[1]] = 1; Do[p[[n+1]] = 0; k = 1; While[n + 1 - k^2 > 0, p[[n+1]] += (-1)^(k+1)*p[[n + 1 - k^2]]; k++;]; p[[n+1]] = 2*p[[n+1]];, {n, 1, nmax}]; p (* Vaclav Kotesovec, Apr 11 2017 *)
    a[ n_] := SeriesCoefficient[ 1 / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Nov 15 2018 *)
    a[n_] := Sum[2^Length[Union[IntegerPartitions[n][[i]]]], {i, 1, PartitionsP[n]}]; (* Richard Joseph Boland, Sep 02 2021 *)
    n = 39; CoefficientList[Product[(1 + x^k)/(1 - x^k), {k, 1, n}] + O[x]^(n + 1), x] (* Oliver Seipel, Sep 19 2021 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A)^2, n))}; /* Michael Somos, Nov 01 2008 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n\2+1,2*x^(2*m-1)/(1-x^(2*m-1)+x*O(x^n))/(2*m-1))),n)} /* Paul D. Hanna, Aug 06 2009 */
    
  • PARI
    N=66; x='x+O('x^N); gf=exp(sum(n=1,N,(sigma(2*n)-sigma(n))*x^n/n));Vec(gf) /* Joerg Arndt, Jul 30 2011 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)/eta(q)^2)} \\ Altug Alkan, Mar 20 2018
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(0, 1, 1, 2)
    b = EulerTransform(a)
    print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020

Formula

Euler transform of period 2 sequence [2, 1, ...]. - Michael Somos, Mar 17 2003
G.f.: Product_{m>=1} (1 + q^m)/(1 - q^m).
G.f.: 1 / (Sum_{m=-inf..inf} (-q)^(m^2)) = 1/theta_4(q).
G.f.: 1 / Product_{m>=1} (1 - q^(2*m)) * (1 - q^(2*m-1))^2.
G.f.: exp( Sum_{n>=1} 2*x^(2*n-1)/(1 - x^(2*n-1))/(2*n-1) ). - Paul D. Hanna, Aug 06 2009
G.f.: exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*x^n/n ). - Joerg Arndt, Jul 30 2011
G.f.: Product_{n>=0} theta_3(q^(2^n))^(2^n). - Joerg Arndt, Aug 03 2011
A004402(n) = (-1)^n * a(n). - Michael Somos, Mar 17 2003
Expansion of eta(q^2) / eta(q)^2 in powers of q. - Michael Somos, Nov 01 2008
Expansion of 1 / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 01 2008
Convolution inverse of A002448. - Michael Somos, Nov 01 2008
Recurrence: a(n) = 2*Sum_{m>=1} (-1)^(m+1) * a(n-m^2).
a(n) = (1/n)*Sum_{k=1..n} (sigma(2*k) - sigma(k))*a(n-k). - Vladeta Jovovic, Dec 05 2004
G.f.: Product_{i>=1} (1 + x^i)^A001511(2i) (see A000041). - Jon Perry, Jun 06 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w^4 * (u^4 + v^4) - 2 * u^2 * v^6. - Michael Somos, Nov 01 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6^3 * (u1^2 + u3^2) - 2 * u1 * u2 * u3^3. - Michael Somos, Nov 01 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2^3 * (u3^2 - 3 * u1^2) + 2 * u1^3 * u3 * u6. - Michael Somos, Nov 01 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 32^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106507. - Michael Somos, Nov 01 2008
a(n) = 2*A014968(n), n >= 1. - Omar E. Pol, Jan 19 2014
a(n) ~ Pi * BesselI(3/2, Pi*sqrt(n)) / (4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Jan 11 2017
Let T(n,k) = the number of partitions of n with parts 1 through k of two kinds, T(n,0) = A000041(n), the number of partitions of n. Then a(n) = T(n,0) + T(n-1,1) + T(n-3,2) + T(n-6,3) + T(n-10,4) + T(n-15,5) + ... . Gregory L. Simay, May 29 2019
For n >= 1, a(n) = Sum_{k>=1} 2^k * A116608(n,k). - Gregory L. Simay, Jun 01 2019
Sum_{n>=1} 1/a(n) = A303662. - Amiram Eldar, Nov 15 2020
a(n) = Sum_{i=1..p(n)} 2^(d(n,i)), where d(n,i) is the number of distinct parts in the i-th partition of n. - Richard Joseph Boland, Sep 02 2021
G.f.: A(x) = exp( Sum_{n >= 1} x^n*(2 + x^n)/(n*(1 - x^(2*n))) ). - Peter Bala, Dec 23 2021
G.f. A(q) satisfies (3*A(q)/A(q^9) - 1)^3 = 9*A(q)^4/A(q^3)^4 - 1. - Paul D. Hanna, Oct 14 2024

Extensions

Minor edits by Vaclav Kotesovec, Sep 13 2014

A156616 G.f.: Product_{n>0} ((1+x^n)/(1-x^n))^n.

Original entry on oeis.org

1, 2, 6, 16, 38, 88, 196, 420, 878, 1794, 3584, 7032, 13572, 25792, 48352, 89512, 163774, 296444, 531234, 943072, 1659560, 2896376, 5015700, 8622108, 14718652, 24960138, 42062200, 70458160, 117349856, 194381704, 320295312, 525123604
Offset: 0

Views

Author

R. J. Mathar, Feb 11 2009

Keywords

Comments

Generating function for a sum over strict plane partitions weighted with 2 powered to their number of connected components.
The inverse Euler transform is apparently 2, 3, 6, 6, 10, 9, 14, 12, 18, 15, 22, 18, 26, 21, ..., A016825 interlaced with A008585. - R. J. Mathar, Apr 23 2009
In general, for m >= 1, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(m*k), then a(n) ~ exp(m/12 + 3/2 * (7*m*Zeta(3)/2)^(1/3) * n^(2/3)) * m^(1/6 + m/36) * (7*Zeta(3))^(1/6 + m/36) / (A^m * 2^(2/3 + m/9) * sqrt(3*Pi) * n^(2/3 + m/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 17 2015
In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(sigma(2*m,2)-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, May 01 2010

Formula

Convolve A000219 with A026007.
O.g.f.: exp( Sum_{n>=1} (sigma_2(2n) - sigma_2(n))/2 *x^n/n ), where sigma_2(n) is the sum of squares of divisors of n (A001157). - Paul D. Hanna, May 01 2010
a(n) ~ exp(1/12 + 3 * 2^(-4/3) * (7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 17 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A076577(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017
G.f.: A(x) = exp( 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^2) ). Cf. A000122 and A302237. - Peter Bala, Dec 23 2021

A261389 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(3*k).

Original entry on oeis.org

1, 6, 30, 128, 486, 1704, 5604, 17484, 52206, 150118, 417696, 1128984, 2973476, 7650720, 19272432, 47616568, 115570014, 275921460, 648771802, 1503889488, 3439990344, 7770915816, 17349229908, 38306180052, 83694778556, 181052778078, 387976101432, 823939048560
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A255610 and A027346.
In general, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(t*k) and t>=1, then a(n) ~ exp(t/12 + 3/2 * (7*t*Zeta(3)/2)^(1/3) * n^(2/3)) * t^(1/6 + t/36) * (7*Zeta(3))^(1/6 + t/36) / (A^t * 2^(2/3 + t/9) * sqrt(3*Pi) * n^(2/3 + t/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Cf. A156616 (t=1), A261386 (t=2).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/4 + 3/2 * (21*Zeta(3)/2)^(1/3) * n^(2/3)) * (7*Zeta(3)/3)^(1/4) / (2 * A^3 * sqrt(Pi) * n^(3/4)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A261452 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k-1).

Original entry on oeis.org

1, 2, 8, 24, 66, 176, 448, 1096, 2608, 6042, 13664, 30280, 65856, 140800, 296432, 615264, 1260306, 2550368, 5102616, 10101000, 19797344, 38439088, 73976160, 141179480, 267300752, 502283714, 937077808, 1736296304, 3196144032, 5846632656, 10631038400
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2015

Keywords

Comments

Convolution of A253289 and A255835.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(1/3) * (7*Zeta(3))^(1/18) * exp(1/6 - Pi^4/(672*Zeta(3)) - Pi^2 * n^(1/3)/(4*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * sqrt(3) * n^(5/9)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A261451 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(k+1).

Original entry on oeis.org

1, 4, 14, 44, 124, 328, 824, 1980, 4590, 10320, 22584, 48268, 101016, 207432, 418704, 832032, 1629764, 3150280, 6014998, 11354084, 21204488, 39206168, 71811256, 130369900, 234704360, 419195412, 743085912, 1307823672, 2286094704, 3970174648, 6852048368
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2015

Keywords

Comments

Convolution of A005380 and A219555.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k+1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (7*Zeta(3))^(13/36) * exp(1/12 - Pi^4/(336*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * (7*Zeta(3))^(1/3)) + 3/2 * ((7*Zeta(3))/2)^(1/3) * n^(2/3)) / (A * 2^(35/18) * 3^(1/2) * Pi * n^(31/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A005309 Fermionic string states.

Original entry on oeis.org

1, 0, 2, 4, 8, 16, 32, 60, 114, 212, 384, 692, 1232, 2160, 3760, 6480, 11056, 18728, 31474, 52492, 86976, 143176, 234224, 380988, 616288, 991624, 1587600, 2529560, 4011808, 6334656, 9960080, 15596532, 24327122, 37801568, 58525152, 90291232, 138825416
Offset: 0

Views

Author

Keywords

Comments

See the reference for precise definition.
The g.f. -(1-2*z+2*z**2)/(-1+2*z) conjectured by Simon Plouffe in his 1992 dissertation is not correct.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

G.f. Product_{k>=1} ((1+x^k)/(1-x^k))^(k-1). - Vaclav Kotesovec, Aug 19 2015
Convolution of A052847 and A052812. - Vaclav Kotesovec, Aug 19 2015
a(n) ~ 2^(7/18) * (7*Zeta(3))^(1/36) * exp(1/12 - Pi^4/(336*Zeta(3)) - Pi^2 * n^(1/3) / (2^(5/3)*(7*Zeta(3))^(1/3)) + 3/2 * (7*Zeta(3)/2)^(1/3) * n^(2/3)) / (A * sqrt(3) * n^(19/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 19 2015

A261384 Expansion of Product_{k>=1} (1+x^k)^(2*k-1) / (1-x^k)^(2*k).

Original entry on oeis.org

1, 3, 12, 39, 117, 331, 893, 2307, 5766, 13986, 33046, 76302, 172567, 383013, 835731, 1795236, 3801105, 7941439, 16386777, 33423342, 67435311, 134675784, 266385932, 522135379, 1014643823, 1955656848, 3740191268, 7100290646, 13383997996, 25058666367
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A161870 and A255835.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k-1)/(1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (7*Zeta(3))^(2/9) * exp(1/6 - Pi^4/(6048*Zeta(3)) - Pi^2 * n^(1/3) / (12*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * 2^(1/6) * sqrt(3*Pi) * n^(13/18)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A216406 G.f.: Product_{n>=1} ((1-x^n)/(1+x^n))^(2*n).

Original entry on oeis.org

1, -4, 0, 8, 16, -8, -48, -56, 0, 116, 256, 264, -32, -648, -1296, -1392, -352, 2040, 5200, 7368, 6112, -784, -13744, -29304, -39648, -33804, -1376, 60368, 139552, 205304, 210208, 103432, -146528, -521744, -928480, -1190000, -1069904, -339720, 1110864, 3146640, 5278624
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2012

Keywords

Comments

The number of contiguous signs seems to increase in proportion to the square-root of the number of terms.
Compare the g.f. to the Jacobi theta_4 series identity:
exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*x^n/n ) = 1 + 2*Sum_{n>=1} (-x)^(n^2).

Examples

			G.f.: A(x) = 1 - 4*x + 8*x^3 + 16*x^4 - 8*x^5 - 48*x^6 - 56*x^7 + 116*x^9 +...
where the g.f. equals the infinite product:
A(x) = (1-x)^2/(1+x)^2 * (1-x^2)^4/(1+x^2)^4 * (1-x^3)^6/(1+x^3)^6 * (1-x^4)^8/(1+x^4)^8 * (1-x^5)^10/(1+x^5)^10 *...
The logarithm of the g.f. is illustrated by:
-log(A(x)) = 4*x + 16*x^2/2 + 40*x^3/3 + 64*x^4/4 + 104*x^5/5 + 160*x^6/6 + 200*x^7/7 + 256*x^8/8 +...+ 4*A076577(n)*x^n/n +...
		

Crossrefs

Cf. A156616, A076577, A001157 (sigma_2), A261386.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, -(sigma(2*m,2)-sigma(m,2))*x^m/m+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1,n,((1-x^m)/(1+x^m +x*O(x^n)))^(2*m)), n)}
    for(n=0, 100, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} -(sigma_2(2*n) - sigma_2(n))*x^n/n ) where sigma_2(n) = sum of squares of divisors of n.

A302237 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k+1)/2).

Original entry on oeis.org

1, 2, 8, 26, 76, 216, 590, 1554, 3988, 9988, 24464, 58794, 138866, 322808, 739658, 1672372, 3734848, 8245956, 18012114, 38952586, 83448832, 177194716, 373111970, 779430870, 1615995262, 3326484686, 6800794428, 13813260736, 27881653590, 55942340000, 111601021856
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

Convolution of the sequences A000294 and A028377.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000217(k).
a(n) ~ exp(2*Pi*n^(3/4)/3 + 7*Zeta(3)*sqrt(n) / (2*Pi^2) - 49*Zeta(3)^2 * n^(1/4) / (4*Pi^5) + 22411 * Zeta(3)^3 / (392*Pi^8) - Zeta(3)/(8*Pi^2) + 1/24) * Pi^(1/24) / (sqrt(A) * 2^(25/12) * n^(61/96)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2018
G.f.: A(x) = exp( 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^3) ). Cf. A000122 and A156616. - Peter Bala, Dec 23 2021

A304447 Coefficient of x^n in Product_{k>=1} ((1+x^k)/(1-x^k))^(2*n).

Original entry on oeis.org

1, 4, 40, 448, 5264, 63624, 783328, 9770240, 123040288, 1561033348, 19922193200, 255472920256, 3289122824000, 42488488508808, 550435283089088, 7148519205631488, 93038785849116736, 1213215382135324680, 15846906866928513736, 207302985358274247104
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(2*n), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2/QPochhammer[x])^(2*n), {x, 0, n}], {n, 0, nmax}]
    (* Calculation of constants {d,c}: *) eq = FindRoot[{QPochhammer[-1, r*s] == 2*Sqrt[s]*QPochhammer[r*s], (QPochhammer[ r*s]*(Log[r*s] - 2*Log[1 - r*s] - 2*QPolyGamma[0, 1, r*s])) / Log[r*s] - r*Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s] + 2*r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[((1 - r*s)*Log[r*s]^2*QPochhammer[r*s]) / (Pi*(2*r*s*(-1 + r*s) * Log[r*s]*(2*(Log[r*s] - 2*Log[1 - r*s] - 2*QPolyGamma[0, 1, r*s]) * Derivative[0, 1][QPochhammer][r*s, r*s] + r*Sqrt[s]*Log[r*s] * (-Derivative[0, 2][QPochhammer][-1, r*s] + 2*Sqrt[s]*Derivative[0, 2][QPochhammer][r*s, r*s])) + QPochhammer[ r*s]*(16*r*s*ArcTanh[1 - 2*r*s] + (1 - r*s)*Log[r*s]^2 - 8*Log[1 - r*s] + 4*(-1 + r*s)*Log[1 - r*s]^2 + 8*(-1 + r*s)*(1 + Log[1 - r*s])* QPolyGamma[0, 1, r*s] + 4*(-1 + r*s)*QPolyGamma[0, 1, r*s]^2 + 4*(-1 + r*s)*(QPolyGamma[1, 1, r*s] - 2*r*s*Log[r*s]*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 13.43567525239504624062504283058713960962824709850658926621911428148173077464... and c = 0.3323527904383991069791889982282236666403568774227549868882810268779...
Showing 1-10 of 12 results. Next