A362083 Numbers k such that, via a residue based measure M(k) (see Comments), k is deficient, k+1 is abundant, and abs(M(k)) + abs(M(k+1)) reaches a new maximum.
11, 17, 19, 47, 53, 103, 347, 349, 557, 1663, 1679, 2519, 5039, 10079, 15119, 25199, 27719, 55439, 110879, 166319, 277199, 332639, 554399, 665279, 720719, 1441439, 2162159, 3603599, 4324319, 7207199, 8648639, 10810799, 21621599, 36756719, 61261199, 73513439, 122522399, 147026879
Offset: 1
Keywords
Examples
The first few terms with measure sums and factorizations generated by the Mathematica program: 0.90610439514731535319 35 {{5,1},{7,1}} 36 {{2,2},{3,2}} 1.1735781643159997761 59 {{59,1}} 60 {{2,2},{3,1},{5,1}} 1.3642976724582397229 119 {{7,1},{17,1}} 120 {{2,3},{3,1},{5,1}} 1.3954100615479538209 179 {{179,1}} 180 {{2,2},{3,2},{5,1}} 1.4600817810807682323 239 {{239,1}} 240 {{2,4},{3,1},{5,1}} 1.6088158511317518390 359 {{359,1}} 360 {{2,3},{3,2},{5,1}} 1.7153941935887132383 719 {{719,1}} 720 {{2,4},{3,2},{5,1}} 1.7851979872921589879 839 {{839,1}} 840 {{2,3},{3,1},{5,1},{7,1}}
Links
- Jeffrey C. Lagarias, An Elementary Problem Equivalent to the Riemmann Hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Amer. Math. Monthly, 109 (2002), 534-543.
Crossrefs
Programs
-
Mathematica
Clear[max, Rp, R, seqtable, Mp, M];max = -1; Rp = 0; Mp = -0.644934066; seqtable = {}; Do[R = Rp + 2 k - 1 - DivisorSigma[1, k]; M = N[(k)*(1 - Zeta[2]/2) - 1 - R/k, 20]; If[DivisorSigma[1, k - 1] < 2 (k - 1) && DivisorSigma[1, k] > 2 k && Abs[Mp] + Abs[M] > max, max = Abs[Mp] + Abs[M]; Print[max, " ", k - 1, " ", FactorInteger[k - 1], " ", k, " ", FactorInteger[k]]; AppendTo[seqtable, {k - 1, k}]]; Rp = R; Mp = M, {k, 2, 1000000000}]; seq = Flatten[seqtable]; Table[seq[[2 j - 1]], {j, 1, Length[seq]/2}]
Formula
Derived starting with lemmas 1-3:
1) Sum_{j=1..k} (sigma(j) + k mod j) = k^2.
2) The average order of sigma(k)/k is Pi^2/6 = zeta(2).
3) R(k) = Sum_{j=1..k} k mod j, so R(k)/k is the average order of (k mod j).
Then:
Sum_{j=1..k} sigma(j) ~ zeta(2)*Sum_{j=1..k} j = zeta(2)*(k^2+k)/2.
R(k)/k ~ k - k*zeta(2)/2 - zeta(2)/2.
0 ~ (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k.
Thus M(k) = (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k is a measure of variance about sigma(k) ~ 2*k corresponding to M(k) ~ 0.
Comments