cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362081 Numbers k achieving record abundance (sigma(k) > 2*k) via a residue-based measure M(k) (see Comments), analogous to superabundant numbers A004394.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 36, 72, 120, 360, 420, 840, 1680, 2520, 4032, 5040, 10080, 25200, 32760, 65520, 98280, 194040, 196560, 388080, 942480, 1801800, 3160080, 3603600, 6320160, 12640320, 24504480, 53721360, 61981920, 73513440, 115315200, 122522400, 189909720, 192099600, 214885440
Offset: 1

Views

Author

Richard Joseph Boland, Apr 08 2023

Keywords

Comments

The residue-based quantifier function, M(k) = (k+1)*(1 - zeta(2)/2) - 1 - ( Sum_{j=1..k} k mod j )/k, measures either abundance (sigma(k) > 2*k), or deficiency (sigma(k) < 2*k), of a positive integer k. It follows from the known facts that Sum_{j=1..k} (sigma(j) + k mod j) = k^2 and that the average order of sigma(k)/k is Pi^2/6 = zeta(2) (see derivation below).
M(k) ~ 0 when sigma(k) ~ 2*k and for sufficiently large k, M(k) is positive when k is an abundant number (A005101) and negative when k is a deficient number (A005100). The terms of this sequence are the abundant k for which M(k) > M(m) for all m < k, analogous to the superabundant numbers A004394, which utilize sigma(k)/k as the measure. However, sigma(k)/k does not give a meaningful measure of deficiency, whereas M(k) does, thus a sensible notion of superdeficient (see A362082).

Examples

			The abundance measure is initially negative, becoming positive for k > 30. Initial measures with factorizations from the Mathematica program:
   1  -0.64493406684822643647   {{1,1}}
   2  -0.46740110027233965471   {{2,1}}
   4  -0.36233516712056609118   {{2,2}}
   6  -0.25726923396879252765   {{2,1},{3,1}}
  12  -0.10873810118013850374   {{2,2},{3,1}}
  24  -0.10334250226949712257   {{2,3},{3,1}}
  30  -0.096478036147509765322  {{2,1},{3,1},{5,1}}
  36   0.068719763307810925260  {{2,2},{3,2}}
  72   0.12657322670640173542   {{2,3},{3,2}}
		

Crossrefs

Programs

  • Mathematica
    Clear[max, Rp, R, seqtable, M];
    max = -1; Rp = 0; seqtable = {};
    Do[R = Rp + 2 k - 1 - DivisorSigma[1, k];
      M = N[(k + 1)*(1 - Zeta[2]/2) - 1 - R/k, 20];
      If[M > max, max = M; Print[k, "   ", max, "   ", FactorInteger[k]];
       AppendTo[seqtable, k]];
      Rp = R, {k, 1, 1000000000}];
    Print[seqtable]
  • PARI
    M(n) = (n+1)*(1 - zeta(2)/2) - 1 - sum(k=2, n, n%k)/n;
    lista(nn) = my(m=-oo, list=List()); for (n=1, nn, my(mm = M(n)); if (mm > m, listput(list, n); m = mm);); Vec(list); \\ Michel Marcus, Apr 21 2023

Formula

Derived starting with lemmas 1-3:
1) Sum_{j=1..k} (sigma(j) + k mod j) = k^2.
2) The average order of sigma(k)/k is Pi^2/6 = zeta(2).
3) R(k) = Sum_{j=1..k} k mod j, so R(k)/k is the average order of (k mod j).
Then:
Sum_{j=1..k} sigma(j) ~ zeta(2)*Sum_{j=1..k} j = zeta(2)*(k^2+k)/2.
R(k)/k ~ k - k*zeta(2)/2 - zeta(2)/2.
0 ~ (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k.
Thus M(k) = (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k is a measure of variance about sigma(k) ~ 2*k corresponding to M(k) ~ 0.

A362083 Numbers k such that, via a residue based measure M(k) (see Comments), k is deficient, k+1 is abundant, and abs(M(k)) + abs(M(k+1)) reaches a new maximum.

Original entry on oeis.org

11, 17, 19, 47, 53, 103, 347, 349, 557, 1663, 1679, 2519, 5039, 10079, 15119, 25199, 27719, 55439, 110879, 166319, 277199, 332639, 554399, 665279, 720719, 1441439, 2162159, 3603599, 4324319, 7207199, 8648639, 10810799, 21621599, 36756719, 61261199, 73513439, 122522399, 147026879
Offset: 1

Views

Author

Richard Joseph Boland, Apr 17 2023

Keywords

Comments

The residue-based quantifier function, M(k), measures either abundance (sigma(k) > 2*k), or deficiency (sigma(k) < 2*k), of a positive integer k. The measure is defined by M(k) = (k+1)*(1 - zeta(2)/2) - 1 - (Sum_{j=1..k} k mod j)/k. It follows from the known facts that Sum_{j=1..k} (sigma(j) + k mod j) = k^2 and that the average order of sigma(k)/k is Pi^2/6 = zeta(2) (see derivation below).
M(k) ~ 0 when sigma(k) ~ 2*k and for sufficiently large k, M(k) is positive when k is an abundant number (A005101) and negative when k is a deficient number (A005100). The terms of this sequence are the deficient k such that k+1 is abundant and abs(M(k)) + abs(M(k+1)) achieves a new maximum, somewhat analogous to A335067 and A326393.

Examples

			The first few terms with measure sums and factorizations generated by the Mathematica program:
0.90610439514731535319   35  {{5,1},{7,1}}   36   {{2,2},{3,2}}
1.1735781643159997761    59  {{59,1}}        60   {{2,2},{3,1},{5,1}}
1.3642976724582397229   119  {{7,1},{17,1}} 120   {{2,3},{3,1},{5,1}}
1.3954100615479538209   179  {{179,1}}      180   {{2,2},{3,2},{5,1}}
1.4600817810807682323   239  {{239,1}}      240   {{2,4},{3,1},{5,1}}
1.6088158511317518390   359  {{359,1}}      360   {{2,3},{3,2},{5,1}}
1.7153941935887132383   719  {{719,1}}      720   {{2,4},{3,2},{5,1}}
1.7851979872921589879   839  {{839,1}}      840   {{2,3},{3,1},{5,1},{7,1}}
		

Crossrefs

Cf. A362081 (analogous to superabundant A004394), A362082 (superdeficient).

Programs

  • Mathematica
    Clear[max, Rp, R, seqtable, Mp, M];max = -1; Rp = 0; Mp = -0.644934066; seqtable = {};
    Do[R = Rp + 2 k - 1 - DivisorSigma[1, k];
     M = N[(k)*(1 - Zeta[2]/2) - 1  - R/k, 20];
     If[DivisorSigma[1, k - 1] < 2 (k - 1) && DivisorSigma[1, k] > 2 k &&
       Abs[Mp] + Abs[M] > max, max = Abs[Mp] + Abs[M];
      Print[max, "   ", k - 1, "   ", FactorInteger[k - 1], "   ", k,
       "   ", FactorInteger[k]]; AppendTo[seqtable, {k - 1, k}]]; Rp = R;
     Mp = M, {k, 2, 1000000000}]; seq = Flatten[seqtable]; Table[seq[[2 j - 1]], {j, 1, Length[seq]/2}]

Formula

Derived starting with lemmas 1-3:
1) Sum_{j=1..k} (sigma(j) + k mod j) = k^2.
2) The average order of sigma(k)/k is Pi^2/6 = zeta(2).
3) R(k) = Sum_{j=1..k} k mod j, so R(k)/k is the average order of (k mod j).
Then:
Sum_{j=1..k} sigma(j) ~ zeta(2)*Sum_{j=1..k} j = zeta(2)*(k^2+k)/2.
R(k)/k ~ k - k*zeta(2)/2 - zeta(2)/2.
0 ~ (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k.
Thus M(k) = (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k is a measure of variance about sigma(k) ~ 2*k corresponding to M(k) ~ 0.
Showing 1-2 of 2 results.