A362081 Numbers k achieving record abundance (sigma(k) > 2*k) via a residue-based measure M(k) (see Comments), analogous to superabundant numbers A004394.
1, 2, 4, 6, 12, 24, 30, 36, 72, 120, 360, 420, 840, 1680, 2520, 4032, 5040, 10080, 25200, 32760, 65520, 98280, 194040, 196560, 388080, 942480, 1801800, 3160080, 3603600, 6320160, 12640320, 24504480, 53721360, 61981920, 73513440, 115315200, 122522400, 189909720, 192099600, 214885440
Offset: 1
Keywords
Examples
The abundance measure is initially negative, becoming positive for k > 30. Initial measures with factorizations from the Mathematica program: 1 -0.64493406684822643647 {{1,1}} 2 -0.46740110027233965471 {{2,1}} 4 -0.36233516712056609118 {{2,2}} 6 -0.25726923396879252765 {{2,1},{3,1}} 12 -0.10873810118013850374 {{2,2},{3,1}} 24 -0.10334250226949712257 {{2,3},{3,1}} 30 -0.096478036147509765322 {{2,1},{3,1},{5,1}} 36 0.068719763307810925260 {{2,2},{3,2}} 72 0.12657322670640173542 {{2,3},{3,2}}
Links
- Jeffrey C. Lagarias, An Elementary Problem Equivalent to the Riemmann Hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Amer. Math. Monthly, 109 (2002), 534-543.
Crossrefs
Programs
-
Mathematica
Clear[max, Rp, R, seqtable, M]; max = -1; Rp = 0; seqtable = {}; Do[R = Rp + 2 k - 1 - DivisorSigma[1, k]; M = N[(k + 1)*(1 - Zeta[2]/2) - 1 - R/k, 20]; If[M > max, max = M; Print[k, " ", max, " ", FactorInteger[k]]; AppendTo[seqtable, k]]; Rp = R, {k, 1, 1000000000}]; Print[seqtable]
-
PARI
M(n) = (n+1)*(1 - zeta(2)/2) - 1 - sum(k=2, n, n%k)/n; lista(nn) = my(m=-oo, list=List()); for (n=1, nn, my(mm = M(n)); if (mm > m, listput(list, n); m = mm);); Vec(list); \\ Michel Marcus, Apr 21 2023
Formula
Derived starting with lemmas 1-3:
1) Sum_{j=1..k} (sigma(j) + k mod j) = k^2.
2) The average order of sigma(k)/k is Pi^2/6 = zeta(2).
3) R(k) = Sum_{j=1..k} k mod j, so R(k)/k is the average order of (k mod j).
Then:
Sum_{j=1..k} sigma(j) ~ zeta(2)*Sum_{j=1..k} j = zeta(2)*(k^2+k)/2.
R(k)/k ~ k - k*zeta(2)/2 - zeta(2)/2.
0 ~ (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k.
Thus M(k) = (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k is a measure of variance about sigma(k) ~ 2*k corresponding to M(k) ~ 0.
Comments