cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362082 Numbers k achieving record deficiency via a residue-based measure, M(k) = (k+1)*(1 - zeta(2)/2) - 1 - ( Sum_{j=1..k} k mod j )/k.

Original entry on oeis.org

1, 5, 11, 23, 47, 59, 167, 179, 359, 503, 719, 1439, 5039, 6719, 7559, 15119, 20159, 52919, 75599, 83159, 166319, 415799, 720719, 831599, 1081079, 2162159, 4324319, 5266799, 7900199, 10533599, 18345599, 28274399, 41081039, 136936799, 205405199, 410810399
Offset: 1

Views

Author

Richard Joseph Boland, Apr 17 2023

Keywords

Comments

M(k) = (k+1)*(1 - zeta(2)/2) - 1 - ( Sum_{j=1..k} k mod j )/k is a measure of either abundance (sigma(k) > 2*k), or deficiency (sigma(k) < 2*k), of a positive integer k. The measure follows from the known facts that Sum_{j=1..k} (sigma(j) + k mod j) = k^2 and that the average order of sigma(k)/k is Pi^2/6 = zeta(2) (see derivation below).
M(k) ~ 0 when sigma(k) ~ 2*k and for sufficiently large k, M(k) is positive when k is an abundant number (A005101) and negative when k is a deficient number (A005100).
The terms of this sequence are the deficient k for which M(k) < M(m) for all m < k and may be thought of as "superdeficient", contra-analogous to the superabundant numbers A004394 utilizing sigma(k)/k as the measure of abundance, which is otherwise not particularly meaningful as a deficiency measure.
15119=13*1163 is the first term that is composite and subsequently, up to 1000000000, roughly half of the terms are composite.

Examples

			First few terms with their M(k) measure and factorizations as generated by the Mathematica program:
    1   -0.64493406684822643647   {{1,1}}
    5   -0.73480220054467930942   {{5,1}}
   11   -0.86960440108935861883  {{11,1}}
   23   -1.0000783673961085420   {{23,1}}
   47   -1.0528856894638174541   {{47,1}}
   59   -1.1107338698535727552   {{59,1}}
  167   -1.1984137110594038972  {{167,1}}
  179   -1.2619431113124463216  {{179,1}}
  359   -1.3499704727921791778  {{359,1}}
  503   -1.3722914063892448936  {{503,1}}
  719   -1.4363475145965658088  {{719,1}}
		

Crossrefs

Cf. A362081 (analogous to superabundant A004394).
Cf. A362083 (analogous to A335067, A326393).

Programs

  • Mathematica
    Clear[min, Rp, R, seqtable, M]; min = 1; Rp = 0; seqtable = {};
    Do[R = Rp + 2 k - 1 - DivisorSigma[1, k];
      M = N[(k + 1)*(1 - Zeta[2]/2) - 1 - R/k, 20];
      If[M < min, min = M; Print[k, "   ", min, "   ", FactorInteger[k]];
       AppendTo[seqtable, k]];
      Rp = R, {k, 1, 1000000000}];
    Print[seqtable]
  • PARI
    M(n) = (n+1)*(1 - zeta(2)/2) - 1 - sum(k=2, n, n%k)/n;
    lista(nn) = my(m=+oo, list=List()); for (n=1, nn, my(mm = M(n)); if (mm < m, listput(list, n); m = mm);); Vec(list); \\ Michel Marcus, Apr 21 2023

Formula

Derived starting with lemmas 1-3:
1) Sum_{j=1..k} (sigma(j) + k mod j) = k^2.
2) The average order of sigma(k)/k is Pi^2/6 = zeta(2).
3) R(k) = Sum_{j=1..k} k mod j, so R(k)/k is the average order of (k mod j).
Then:
Sum_{j=1..k} sigma(j) ~ zeta(2)*Sum_{j=1..k} j = zeta(2)*(k^2+k)/2.
R(k)/k ~ k - k*zeta(2)/2 - zeta(2)/2.
0 ~ (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k.
Thus M(k) = (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k is a measure of variance about sigma(k) ~ 2*k corresponding to M(k) ~ 0.

A362083 Numbers k such that, via a residue based measure M(k) (see Comments), k is deficient, k+1 is abundant, and abs(M(k)) + abs(M(k+1)) reaches a new maximum.

Original entry on oeis.org

11, 17, 19, 47, 53, 103, 347, 349, 557, 1663, 1679, 2519, 5039, 10079, 15119, 25199, 27719, 55439, 110879, 166319, 277199, 332639, 554399, 665279, 720719, 1441439, 2162159, 3603599, 4324319, 7207199, 8648639, 10810799, 21621599, 36756719, 61261199, 73513439, 122522399, 147026879
Offset: 1

Views

Author

Richard Joseph Boland, Apr 17 2023

Keywords

Comments

The residue-based quantifier function, M(k), measures either abundance (sigma(k) > 2*k), or deficiency (sigma(k) < 2*k), of a positive integer k. The measure is defined by M(k) = (k+1)*(1 - zeta(2)/2) - 1 - (Sum_{j=1..k} k mod j)/k. It follows from the known facts that Sum_{j=1..k} (sigma(j) + k mod j) = k^2 and that the average order of sigma(k)/k is Pi^2/6 = zeta(2) (see derivation below).
M(k) ~ 0 when sigma(k) ~ 2*k and for sufficiently large k, M(k) is positive when k is an abundant number (A005101) and negative when k is a deficient number (A005100). The terms of this sequence are the deficient k such that k+1 is abundant and abs(M(k)) + abs(M(k+1)) achieves a new maximum, somewhat analogous to A335067 and A326393.

Examples

			The first few terms with measure sums and factorizations generated by the Mathematica program:
0.90610439514731535319   35  {{5,1},{7,1}}   36   {{2,2},{3,2}}
1.1735781643159997761    59  {{59,1}}        60   {{2,2},{3,1},{5,1}}
1.3642976724582397229   119  {{7,1},{17,1}} 120   {{2,3},{3,1},{5,1}}
1.3954100615479538209   179  {{179,1}}      180   {{2,2},{3,2},{5,1}}
1.4600817810807682323   239  {{239,1}}      240   {{2,4},{3,1},{5,1}}
1.6088158511317518390   359  {{359,1}}      360   {{2,3},{3,2},{5,1}}
1.7153941935887132383   719  {{719,1}}      720   {{2,4},{3,2},{5,1}}
1.7851979872921589879   839  {{839,1}}      840   {{2,3},{3,1},{5,1},{7,1}}
		

Crossrefs

Cf. A362081 (analogous to superabundant A004394), A362082 (superdeficient).

Programs

  • Mathematica
    Clear[max, Rp, R, seqtable, Mp, M];max = -1; Rp = 0; Mp = -0.644934066; seqtable = {};
    Do[R = Rp + 2 k - 1 - DivisorSigma[1, k];
     M = N[(k)*(1 - Zeta[2]/2) - 1  - R/k, 20];
     If[DivisorSigma[1, k - 1] < 2 (k - 1) && DivisorSigma[1, k] > 2 k &&
       Abs[Mp] + Abs[M] > max, max = Abs[Mp] + Abs[M];
      Print[max, "   ", k - 1, "   ", FactorInteger[k - 1], "   ", k,
       "   ", FactorInteger[k]]; AppendTo[seqtable, {k - 1, k}]]; Rp = R;
     Mp = M, {k, 2, 1000000000}]; seq = Flatten[seqtable]; Table[seq[[2 j - 1]], {j, 1, Length[seq]/2}]

Formula

Derived starting with lemmas 1-3:
1) Sum_{j=1..k} (sigma(j) + k mod j) = k^2.
2) The average order of sigma(k)/k is Pi^2/6 = zeta(2).
3) R(k) = Sum_{j=1..k} k mod j, so R(k)/k is the average order of (k mod j).
Then:
Sum_{j=1..k} sigma(j) ~ zeta(2)*Sum_{j=1..k} j = zeta(2)*(k^2+k)/2.
R(k)/k ~ k - k*zeta(2)/2 - zeta(2)/2.
0 ~ (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k.
Thus M(k) = (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k is a measure of variance about sigma(k) ~ 2*k corresponding to M(k) ~ 0.
Showing 1-2 of 2 results.