cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 191 results. Next

A265835 Numbers n such that A015128(n)/2 is prime.

Original entry on oeis.org

2, 4, 16, 36, 400, 1296, 1521, 52441
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Comments

Next term, if it exists, is greater than 4000000. - Vaclav Kotesovec, updated Apr 12 2017
The values of a(n) are the squares of these integers for 1 < n < 9: 2, 4, 6, 20, 36, 39, 229. Squares also appear in the sequence of numbers k such that A015128(k)/2 is semiprime. - Altug Alkan, Dec 16 2015

Examples

			4 is a term because A015128(4)/2 = 14/2 = 7 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], PrimeQ[Sum[PartitionsP[#-k]*PartitionsQ[k], {k, 0, #}]/2] &]
  • PARI
    a015128(n) = polcoeff(exp(sum(m=1, n\2+1, 2*x^(2*m-1)/(1-x^(2*m-1)+x*O(x^n))/(2*m-1))), n);
    for(n=1, 1e3, if(ispseudoprime(a015128(n)/2), print1(n, ", "))) \\ Altug Alkan, Dec 16 2015

A266497 Binomial transform of A015128.

Original entry on oeis.org

1, 3, 9, 27, 79, 225, 627, 1717, 4633, 12341, 32501, 84737, 218959, 561263, 1428287, 3610671, 9072367, 22668285, 56345835, 139382713, 343242533, 841713531, 2055944117, 5003148987, 12132552115, 29323810757, 70651867863, 169719163521, 406541986857, 971192810019
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2015

Keywords

Crossrefs

Programs

  • Mathematica
    A015128[n_]:=Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}];
    Table[Sum[Binomial[n, k]*A015128[k], {k, 0, n}], {n, 0, 30}]

Formula

a(n) ~ 2^(n-2) * exp(Pi*sqrt(n/2) + Pi^2/16) / n.
a(n) = [x^n] (1 + x)^n/theta_4(x), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 20 2018

A277643 Partial sums of number of overpartitions (A015128).

Original entry on oeis.org

1, 3, 7, 15, 29, 53, 93, 157, 257, 411, 643, 987, 1491, 2219, 3259, 4731, 6793, 9657, 13605, 19005, 26341, 36245, 49533, 67261, 90789, 121855, 162679, 216087, 285655, 375903, 492527, 642671, 835283, 1081539, 1395347, 1793987, 2298873, 2936465, 3739401, 4747849
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 25 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]]
    nmax = 50; CoefficientList[Series[1/(1-x) * Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 25 2017 *)

Formula

a(n) = Sum_{k=0..n} A015128(k).
a(n) ~ exp(Pi*sqrt(n))/(4*Pi*sqrt(n)) * (1 + Pi/(4*sqrt(n))).
G.f.: 1/(1-x) * Product_{k>=1} (1 + x^k) / (1 - x^k). - Vaclav Kotesovec, Mar 25 2017
G.f.: 1/((1 - x)*theta_4(x)), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 20 2018

A303662 Decimal expansion of Sum_{k>=1} 1/A015128(k).

Original entry on oeis.org

1, 0, 5, 9, 2, 5, 4, 7, 1, 3, 6, 4, 9, 8, 7, 4, 5, 2, 2, 2, 2, 2, 6, 5, 6, 2, 0, 5, 8, 8, 4, 2, 8, 4, 1, 1, 4, 9, 6, 7, 3, 2, 1, 2, 3, 4, 2, 7, 9, 8, 2, 7, 2, 3, 5, 3, 2, 3, 3, 6, 6, 1, 5, 8, 0, 1, 3, 9, 7, 5, 3, 6, 2, 2, 1, 5, 2, 4, 0, 4, 3, 2, 7, 3, 1, 8, 9, 5, 9, 5, 4, 0, 0, 9, 6, 8, 4, 7, 5, 9, 9, 3, 9, 9, 3, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 28 2018

Keywords

Examples

			1.059254713649874522222656205884284114967321234279827235323366158...
		

Crossrefs

A219430 Number of overpartitions of n^2; a(n) = A015128(n^2).

Original entry on oeis.org

1, 2, 14, 154, 2062, 31066, 504886, 8652402, 154208270, 2832526306, 53287424374, 1022143389578, 19924535352374, 393685747760714, 7869272950148382, 158875743754158098, 3235672769357219854, 66405081412501161442, 1372115409786911859502, 28524372351269271839610
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2012

Keywords

Comments

Limit a(n+1)/a(n) = exp(Pi) = 23.14069263...
a(n) ~ (cosh(Pi*n) - sinh(Pi*n)/(Pi*n)) / (4*n^2), a "remarkable approximation" due to "Ramanujan's false statement" (see formula 12 in "Jagged partitions" link).
By definition of A015128, an overpartition of n^2 is an ordered sequence of nonincreasing integers that sum to n^2, where the first occurrence of each integer may be overlined (see Hirschhorn and Sellers link).

Examples

			G.f.: A(x) = 1 + 2*x + 14*x^2 + 154*x^3 + 2062*x^4 + 31066*x^5 + 504886*x^6 +...
It appears that the logarithmic derivative of the g.f. A(x),
A'(x)/A(x) = 2 + 24*x + 386*x^2 + 6832*x^3 + 128442*x^4 + 2505720*x^5 + 50153770*x^6 + 1022997344*x^7 + 21170657906*x^8 +...+ A219431(n+1)*x^n +...
is congruent to 2/(1-x^2) mod 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[n^2-k]*PartitionsQ[k], {k, 0, n^2}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 28 2015 *)
  • PARI
    /* Formula: a(n) = [x^(n^2)] 1 / theta_4(x) */
    {a(n)=polcoeff(1/(1+2*sum(k=1,n,(-x)^(k^2))+x*O(x^(n^2))),n^2)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* Formula: a(n) = -2*Sum_{k=1..n} (-1)^k * A015128(n^2-k^2) */
    {A015128(n)=polcoeff(1/(1+2*sum(k=1, sqrtint(n+1), (-x)^(k^2))+x*O(x^(n))), n)}
    {a(n)=if(n==0,1,-2*sum(k=1, n, (-1)^k*A015128(n^2-k^2)))}
    for(n=0, 25, print1(a(n), ", "))

Formula

a(n) = -2*Sum_{k=1..n} (-1)^k * A015128(n^2-k^2) for n>0 with a(0)=1.
a(n) = [x^(n^2)] 1 / ( Sum_{m=-inf..inf} (-x)^(m^2) ).
a(n) = [x^(n^2)] 1 / theta_4(x).
a(n) = [x^(n^2)] eta(x^2) / eta(x)^2.
a(n) = [x^(n^2)] Product_{m>=1} (1 + x^m) / (1 - x^m).
a(n) = [x^(n^2)] Product_{m>=1} 1 / ( (1 - x^(2*m)) * (1 - x^(2*m-1))^2 ).
a(n) = [x^(n^2)] exp( Sum_{m>=1} 2*x^(2*m-1)/(1 - x^(2*m-1))/(2*m-1) ).
a(n) = [x^(n^2)] exp( Sum_{m>=1} (sigma(2*m) - sigma(m)) * x^m/m ).

A294499 Inverse binomial transform of the number of overpartitions (A015128).

Original entry on oeis.org

1, 1, 1, 1, -1, 3, -5, 7, -7, 3, 5, -9, -17, 129, -417, 977, -1809, 2591, -2317, -1061, 10485, -27983, 49165, -51319, -26861, 311455, -1011473, 2393275, -4643591, 7521265, -9694135, 7738137, 4976985, -38789975, 106112817, -215068927, 354515933, -464539803
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 01 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n, k]*Sum[PartitionsP[k-j]*PartitionsQ[j], {j, 0, k}], {k, 0, n}], {n, 0, 50}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A015128(k).
a(n) = [x^n] (1 - x)^n/theta_4(x), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Nov 03 2017

A299961 Numbers k such that k divides the number of overpartitions of k (A015128).

Original entry on oeis.org

1, 2, 12, 13, 22, 29, 88, 284, 370, 781, 1116, 1472, 1518, 1592, 2431, 2475, 2625, 3286, 5264, 6264, 6444, 7512, 7875, 9900, 22515, 30248, 30946, 31500, 32995, 41580, 69920, 112320, 126000, 140580, 142668, 166084, 166968, 225354, 232000, 272538, 290064, 312000
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2018

Keywords

Examples

			284 is in the sequence because A015128(284) = 42480456349401075392 is divisible by 284.
		

Crossrefs

Extensions

More terms from Vaclav Kotesovec, Mar 02 2018

A265015 a(n) = A015128(n)^n.

Original entry on oeis.org

1, 2, 16, 512, 38416, 7962624, 4096000000, 4398046511104, 10000000000000000, 48717667557975775744, 451730952053751361306624, 7982572438812891719395180544, 268637376395543538746286686601216, 16132732437821617561429013924830773248
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; A015128 = Rest[CoefficientList[Series[Product[(1+x^k)/(1-x^k), {k,1,nmax}], {x,0,nmax}], x]]; Flatten[{1, Table[A015128[[n]]^n, {n,1,nmax}]}]

Formula

a(n) ~ exp(Pi*n^(3/2) - sqrt(n)/Pi - 1/(2*Pi^2)) / (8^n * n^n) * (1 - 1/(3*Pi^3*sqrt(n))).

A307945 Exponential convolution of A015128 with themselves.

Original entry on oeis.org

1, 4, 16, 64, 252, 968, 3616, 13120, 46432, 160772, 545856, 1821056, 5979520, 19350552, 61795968, 194964672, 608261628, 1878140024, 5743681784, 17408223328, 52320105080, 156011658272, 461763417056, 1357182242560, 3962591708576, 11497241014652
Offset: 0

Views

Author

Vaclav Kotesovec, May 07 2019

Keywords

Crossrefs

Programs

  • Maple
    S:= series(1/JacobiTheta4(0,q),q,101):
    f:= n -> add(binomial(n,k)*coeff(S,q,k)*coeff(S,q,n-k),k=0..n):
    map(f, [$0..100]); # Robert Israel, May 08 2019
  • Mathematica
    A015128[n_]:=Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}]; Table[Sum[Binomial[n, k]*A015128[k]*A015128[n-k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A015128(k) * A015128(n-k).
a(n) ~ 2^(n-4) * exp(Pi*sqrt(2*n)) / n^2.

A356289 a(n) = Sum_{k=0..n} binomial(2*n, n-k) * v(k), where v(k) is the number of overpartitions of n (A015128).

Original entry on oeis.org

1, 4, 18, 82, 372, 1676, 7500, 33358, 147570, 649722, 2848524, 12441434, 54155774, 235008672, 1016971480, 4389589484, 18902538548, 81222609020, 348308661820, 1490884718484, 6370468593732, 27176620756392, 115760526170340, 492386739902574, 2091554077819948, 8873225318953248
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[PartitionsP[k-j]*PartitionsQ[j], {j, 0, k}] * Binomial[2*n, n-k], {k, 0, n}], {n, 0, 30}]

Formula

a(n) ~ 2^(2*n - 7/6) * exp(3 * Pi^(4/3) * n^(1/3) / 2^(8/3)) / (sqrt(3) * Pi^(2/3) * n^(2/3)).
Showing 1-10 of 191 results. Next