cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211971 Column 0 of square array A211970 (in which column 1 is A000041).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 16, 24, 36, 54, 78, 112, 160, 224, 312, 432, 590, 802, 1084, 1452, 1936, 2568, 3384, 4440, 5800, 7538, 9758, 12584, 16160, 20680, 26376, 33520, 42468, 53644, 67552, 84832, 106246, 132706, 165344, 205512, 254824, 315256, 389168, 479368
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

Partial sums give A015128. - Omar E. Pol, Jan 09 2014

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Differences[Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 60}]]}] (* Vaclav Kotesovec, Oct 25 2016 *)
    CoefficientList[Series[(1 - x)/EllipticTheta[4, 0, x], {x, 0, 43}], x] (* Robert G. Wilson v, Mar 06 2018 *)

Formula

a(n) ~ exp(Pi*sqrt(n))*Pi / (16*n^(3/2)) * (1 - (3/Pi + Pi/4)/sqrt(n) + (3/2 + 3/Pi^2+ Pi^2/24)/n). - Vaclav Kotesovec, Oct 25 2016, extended Nov 04 2016
G.f.: (1 - x)/theta_4(x), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Mar 05 2018

A291552 Expansion of (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^p(k), where p(k) is the number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 5, 11, 25, 52, 110, 221, 444, 868, 1685, 3212, 6082, 11361, 21071, 38693, 70570, 127670, 229557, 409963, 728069, 1285522, 2258318, 3947115, 6867238, 11893648, 20513199, 35235429, 60292928, 102787903, 174620017, 295644893, 498931699, 839367287, 1407864040, 2354559426, 3926878130
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

Partial sums of A001970.

Examples

			Equivalently (Cayley), a(n) = total number of 2-dimensional partitions of all nonnegative integers <= n.
a(3) = 11 because we have:
0...1...2.11.1...3.21.2.111.11.1
.............1........1.....1..1
...............................1
and 1 + 1 + 3 + 6 = 11.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    nmax = 36; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^p(k), where p(k) = [x^k] Product_{k>=1} 1/(1 - x^k).

A309266 Expansion of (1 + x) * Product_{k>=1} (1 + x^k)/(1 - x^k).

Original entry on oeis.org

1, 3, 6, 12, 22, 38, 64, 104, 164, 254, 386, 576, 848, 1232, 1768, 2512, 3534, 4926, 6812, 9348, 12736, 17240, 23192, 31016, 41256, 54594, 71890, 94232, 122976, 159816, 206872, 266768, 342756, 438868, 560064, 712448, 903526, 1142478, 1440528, 1811384, 2271720, 2841800, 3546224
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 42; CoefficientList[Series[(1 + x) Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = Sum[PartitionsP[k] PartitionsQ[n - k], {k, 0, n}]; Table[a[n] + a[n - 1], {n, 0, 42}]

Formula

G.f.: (1 + x)/theta_4(x), where theta_4() is the Jacobi theta function.
a(n) = A015128(n) + A015128(n-1).
a(n) ~ exp(Pi*sqrt(n)) / (4*n) * (1 - (Pi/4 + 1/Pi)/sqrt(n)). - Vaclav Kotesovec, Jul 20 2019
Showing 1-3 of 3 results.