A261452
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k-1).
Original entry on oeis.org
1, 2, 8, 24, 66, 176, 448, 1096, 2608, 6042, 13664, 30280, 65856, 140800, 296432, 615264, 1260306, 2550368, 5102616, 10101000, 19797344, 38439088, 73976160, 141179480, 267300752, 502283714, 937077808, 1736296304, 3196144032, 5846632656, 10631038400
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
A005309
Fermionic string states.
Original entry on oeis.org
1, 0, 2, 4, 8, 16, 32, 60, 114, 212, 384, 692, 1232, 2160, 3760, 6480, 11056, 18728, 31474, 52492, 86976, 143176, 234224, 380988, 616288, 991624, 1587600, 2529560, 4011808, 6334656, 9960080, 15596532, 24327122, 37801568, 58525152, 90291232, 138825416
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- T. Curtright, Counting symmetry patterns in the spectra of strings, in H. J. de Vega and N. Sánchez, editors, String Theory, Quantum Cosmology and Quantum Gravity. Integrable and Conformal Invariant Theories. World Scientific, Singapore, 1987, pp. 304-333, eq. (3.39) and Table 3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
A300412
a(n) = [x^n] Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k.
Original entry on oeis.org
1, 2, 16, 144, 1376, 15800, 210816, 3333372, 61688448, 1318588146, 32004369200, 869282342632, 26099925704928, 857736429098848, 30605729417479104, 1177841009504482200, 48614265201514729984, 2141639401723095243324, 100282931820560447963568, 4973060138191518242569120
Offset: 0
The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (2), 6, 16, 38, 88, ...
n = 2: 1, 4, (16), 60, 192, 596, ...
n = 3: 1, 6, 30, (144), 582, 2280, ...
n = 4: 1, 8, 48, 280, (1376), 6568, ...
n = 5: 1, 10, 70, 480, 2790, (15800), ...
-
Table[SeriesCoefficient[Product[((1 + n x^k)/(1 - n x^k))^k, {k, 1, n}], {x, 0, n}], {n, 0, 19}]
Showing 1-3 of 3 results.
Comments