cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A341385 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^3.

Original entry on oeis.org

1, 6, 27, 92, 279, 762, 1952, 4725, 10968, 24551, 53346, 112932, 233755, 474288, 945384, 1854517, 3585534, 6841182, 12895246, 24035841, 44337672, 80999765, 146644746, 263249169, 468817933, 828658233, 1454315508, 2535217624, 4391290854, 7560034419, 12939963016
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &

Formula

a(n) ~ A027346(n). - Vaclav Kotesovec, Feb 20 2021

A341386 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^4.

Original entry on oeis.org

1, 8, 44, 184, 662, 2120, 6256, 17276, 45277, 113568, 274592, 643220, 1465838, 3260428, 7097338, 15153288, 31791822, 65645360, 133584864, 268213400, 531879490, 1042657088, 2022113788, 3882468712, 7384455791, 13921287616, 26026092198, 48273051172, 88868177735
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..32);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 32; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &

A341387 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^5.

Original entry on oeis.org

1, 10, 65, 320, 1330, 4872, 16255, 50335, 146775, 407045, 1082000, 2773045, 6884650, 16620225, 39135280, 90113553, 203347645, 450516450, 981491380, 2105504205, 4452798556, 9293254605, 19158353285, 39044262235, 78719105560, 157112112293, 310599279105
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..31);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^5, {x, 0, nmax}], x] // Drop[#, 5] &

A341388 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^6.

Original entry on oeis.org

1, 12, 90, 508, 2391, 9840, 36578, 125358, 402093, 1220232, 3532836, 9821280, 26352110, 68528718, 173311971, 427486178, 1030855416, 2435255634, 5645810201, 12864839166, 28850671284, 63751119334, 138946592610, 298974483954, 635626314025
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..30);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 30; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^6, {x, 0, nmax}], x] // Drop[#, 6] &

A341390 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^7.

Original entry on oeis.org

1, 14, 119, 756, 3969, 18102, 74102, 278161, 972447, 3202521, 10022705, 30013914, 86475340, 240787680, 650356936, 1709167922, 4381936874, 10984062425, 26971690900, 64986689201, 153866265007, 358443604177, 822523519244, 1861072144260, 4155817046514
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..31);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^7, {x, 0, nmax}], x] // Drop[#, 7] &

A341391 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^8.

Original entry on oeis.org

1, 16, 152, 1072, 6204, 31024, 138544, 564824, 2135902, 7580944, 25485560, 81734696, 251514840, 746123304, 2142114356, 5971477112, 16208165181, 42936937488, 111240873128, 282363615336, 703303327288, 1721329848680, 4144792701532, 9829483710112
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..31);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^8, {x, 0, nmax}], x] // Drop[#, 8] &

A341393 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^9.

Original entry on oeis.org

1, 18, 189, 1464, 9252, 50292, 243117, 1068939, 4344660, 16522967, 59349627, 202844007, 663615180, 2088375867, 6347592999, 18698498610, 53538715836, 149375490453, 406987481852, 1084906793142, 2834211905622, 7266665613438, 18308976116535
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..31);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^9, {x, 0, nmax}], x] // Drop[#, 9] &

A341394 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^10.

Original entry on oeis.org

1, 20, 230, 1940, 13285, 77944, 405250, 1910330, 8300380, 33655860, 128574734, 466317760, 1615509765, 5373215450, 17230062315, 53457917856, 160963157005, 471587847690, 1347417640405, 3761860656610, 10280578499844, 27543107112940, 72440412567485
Offset: 10

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 10):
    seq(a(n), n=10..32);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 32; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^10, {x, 0, nmax}], x] // Drop[#, 10] &

A341395 Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 + x^k)^k)^n.

Original entry on oeis.org

1, 2, 14, 92, 662, 4872, 36578, 278161, 2135902, 16522967, 128574734, 1005321616, 7891885382, 62160038813, 491003317483, 3888045701232, 30854283708670, 245315312649653, 1953735732991919, 15583347966328833, 124463844976490422, 995305632560023009, 7968042676400949882
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, g(n+1), (q->
          add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    Join[{1}, Table[SeriesCoefficient[(-1 + Product[(1 + x^k)^k, {k, 1, 2 n}])^n, {x, 0, 2 n}], {n, 1, 22}]]
    A[n_, k_] := A[n, k] = If[n == 0, 1, k Sum[A[n - j, k] Sum[(-1)^(j/d + 1) d^2, {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; Table[T[2 n, n], {n, 0, 22}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 8.191928734348241613884260036383361206707761707495484130816183793791732456844... and c = 0.30227512720649344220720362916140286571342247518684432176920275576011986255... - Vaclav Kotesovec, Feb 20 2021
Showing 1-9 of 9 results.