A341384 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^2.
1, 4, 14, 36, 89, 200, 434, 898, 1810, 3548, 6810, 12816, 23719, 43250, 77795, 138244, 242920, 422510, 727907, 1243094, 2105493, 3538936, 5905481, 9787810, 16118588, 26383244, 42936039, 69491436, 111884015, 179239648, 285775148, 453550910, 716670609
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..10000
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/ `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n) end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) end: a:= n-> b(n, 2): seq(a(n), n=2..34); # Alois P. Heinz, Feb 10 2021
-
Mathematica
nmax = 34; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
Formula
a(n) ~ A026011(n). - Vaclav Kotesovec, Feb 20 2021