cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A001113 Decimal expansion of e.

Original entry on oeis.org

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, 5, 9, 5, 7, 4, 9, 6, 6, 9, 6, 7, 6, 2, 7, 7, 2, 4, 0, 7, 6, 6, 3, 0, 3, 5, 3, 5, 4, 7, 5, 9, 4, 5, 7, 1, 3, 8, 2, 1, 7, 8, 5, 2, 5, 1, 6, 6, 4, 2, 7, 4, 2, 7, 4, 6
Offset: 1

Views

Author

Keywords

Comments

e is sometimes called Euler's number or Napier's constant.
Also, decimal expansion of sinh(1)+cosh(1). - Mohammad K. Azarian, Aug 15 2006
If m and n are any integers with n > 1, then |e - m/n| > 1/(S(n)+1)!, where S(n) = A002034(n) is the smallest number such that n divides S(n)!. - Jonathan Sondow, Sep 04 2006
Limit_{n->infinity} A000166(n)*e - A000142(n) = 0. - Seiichi Kirikami, Oct 12 2011
Euler's constant (also known as Euler-Mascheroni constant) is gamma = 0.57721... and Euler's number is e = 2.71828... . - Mohammad K. Azarian, Dec 29 2011
One of the many continued fraction expressions for e is 2+2/(2+3/(3+4/(4+5/(5+6/(6+ ... from Ramanujan (1887-1920). - Robert G. Wilson v, Jul 16 2012
e maximizes the value of x^(c/x) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. This explains why elements of A000792 are composed primarily of factors of 3, and where needed, some factors of 2. These are the two primes closest to e. - Richard R. Forberg, Oct 19 2014
There are two real solutions x to c^x = x^c when c, x > 0 and c != e, one of which is x = c, and only one real solution when c = e, where the solution is x = e. - Richard R. Forberg, Oct 22 2014
This is the expected value of the number of real numbers that are independently and uniformly chosen at random from the interval (0, 1) until their sum exceeds 1 (Bush, 1961). - Amiram Eldar, Jul 21 2020

Examples

			2.71828182845904523536028747135266249775724709369995957496696762772407663...
		

References

  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 400.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 250-256.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers, p. 85.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press, 1994.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 52.
  • G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places. Math. Tables and Other Aids to Computation 4, (1950). 11-15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 1 and 2, equations 1:7:4, 2:5:4 at pages 13, 20.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 46.

Crossrefs

Cf. A002034, A003417 (continued fraction), A073229, A122214, A122215, A122216, A122217, A122416, A122417.
Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), this sequence (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012
Powers e^k: A092578 (k = -7), A092577 (k = -6), A092560 (k = -5), A092553 - A092555 (k = -2 to -4), A068985 (k = -1), A072334 (k = 2), A091933 (k = 3), A092426 (k = 4), A092511 - A092513 (k = 5 to 7).

Programs

  • Haskell
    -- See Niemeijer link.
    a001113 n = a001113_list !! (n-1)
    a001113_list = eStream (1, 0, 1)
       [(n, a * d, d) | (n, d, a) <- map (\k -> (1, k, 1)) [1..]] where
       eStream z xs'@(x:xs)
         | lb /= approx z 2 = eStream (mult z x) xs
         | otherwise = lb : eStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 1
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jun 12 2013
  • Maple
    Digits := 200: it := evalf((exp(1))/10, 200): for i from 1 to 200 do printf(`%d,`,floor(10*it)): it := 10*it-floor(10*it): od: # James Sellers, Feb 13 2001
  • Mathematica
    RealDigits[E, 10, 120][[1]] (* Harvey P. Dale, Nov 14 2011 *)

Formula

e = Sum_{k >= 0} 1/k! = lim_{x -> 0} (1+x)^(1/x).
e is the unique positive root of the equation Integral_{u = 1..x} du/u = 1.
exp(1) = ((16/31)*(1 + Sum_{n>=1} ((1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!)))^2. Robert Israel confirmed that the above formula is correct, saying: "In fact, Sum_{n=0..oo} n^j*t^n/n! = P_j(t)*exp(t) where P_0(t) = 1 and for j >= 1, P_j(t) = t (P_(j-1)'(t) + P_(j-1)(t)). Your sum is 1/2*P_3(1/2) + 1/2*P_1(1/2) + P_0(1/2)." - Alexander R. Povolotsky, Jan 04 2009
exp(1) = (1 + Sum_{n>=1} ((1+n+n^3)/n!))/7. - Alexander R. Povolotsky, Sep 14 2011
e = 1 + (2 + (3 + (4 + ...)/4)/3)/2 = 2 + (1 + (1 + (1 + ...)/4)/3)/2. - Rok Cestnik, Jan 19 2017
From Peter Bala, Nov 13 2019: (Start)
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,..., where R(n,x) is the n-th row polynomial of A269953.
e = 2 + Sum_{n >= 0} (-1)^n*(n+2)!/(d(n+2)*d(n+3)), where d(n) = A000166(n).
e = Sum_{n >= 0} (x^2 + (n+2)*x + n)/(n!(n + x)*(n + 1 + x)), provided x is not zero or a negative integer. (End)
Equals lim_{n -> oo} (2*3*5*...*prime(n))^(1/prime(n)). - Peter Luschny, May 21 2020
e = 3 - Sum_{n >= 0} 1/((n+1)^2*(n+2)^2*n!). - Peter Bala, Jan 13 2022
e = lim_{n->oo} prime(n)*(1 - 1/n)^prime(n). - Thomas Ordowski, Jan 31 2023
e = 1+(1/1)*(1+(1/2)*(1+(1/3)*(1+(1/4)*(1+(1/5)*(1+(1/6)*(...)))))), equivalent to the first formula. - David Ulgenes, Dec 01 2023
From Michal Paulovic, Dec 12 2023: (Start)
Equals lim_{n->oo} (1 + 1/n)^n.
Equals x^(x^(x^...)) (infinite power tower) where x = e^(1/e) = A073229. (End)
Equals Product_{k>=1} (1 + 1/k) * (1 - 1/(k + 1)^2)^k. - Antonio Graciá Llorente, May 14 2024
Equals lim_{n->oo} Product_{k=1..n} (n^2 + k)/(n^2 - k) (see Finch). - Stefano Spezia, Oct 19 2024
e ~ (1 + 9^((-4)^(7*6)))^(3^(2^85)), correct to more than 18*10^24 digits (Richard Sabey, 2004); see Haran and Grime link. - Paolo Xausa, Dec 21 2024.

A073226 Decimal expansion of e^e.

Original entry on oeis.org

1, 5, 1, 5, 4, 2, 6, 2, 2, 4, 1, 4, 7, 9, 2, 6, 4, 1, 8, 9, 7, 6, 0, 4, 3, 0, 2, 7, 2, 6, 2, 9, 9, 1, 1, 9, 0, 5, 5, 2, 8, 5, 4, 8, 5, 3, 6, 8, 5, 6, 1, 3, 9, 7, 6, 9, 1, 4, 0, 7, 4, 6, 4, 0, 5, 9, 1, 4, 8, 3, 0, 9, 7, 3, 7, 3, 0, 9, 3, 4, 4, 3, 2, 6, 0, 8, 4, 5, 6, 9, 6, 8, 3, 5, 7, 8, 7, 3, 4, 6, 0, 5, 1, 1, 5
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

Given z > 0, there exist positive real numbers x < y, with x^y = y^x = z, if and only if z > e^e. In that case, 1 < x < e < y and (x, y) = ((1 + 1/t)^t, (1 + 1/t)^(t+1)) for some t > 0. (For example, t = 1 gives 2^4 = 4^2 = 16 > e^e.) Proofs of these classical results and applications of them are in Marques and Sondow (2010).
e^e = lim_{n->infinity} ((n+1)/n)^((n+1)^(n+1)/n^n), n > 0 an integer; cf. [Vernescu] wherein it is also stated that the assertions of the previous comment above were proved by Alexandru Lupas in 2006. - L. Edson Jeffery, Sep 18 2012
A weak form of Schanuel's Conjecture implies that e^e is transcendental--see Marques and Sondow (2012).

Examples

			15.15426224147926418976043027262991190552854853685613976914...
		

Crossrefs

Cf. A073233 (Pi^Pi), A049006 (i^i), A001113 (e), A073227 (e^e^e), A004002 (Benford numbers), A056072 (floor(e^e^...^e), n e's), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073229 (e^(1/e)), A073230 ((1/e)^e).

Programs

  • Magma
    Exp(Exp(1)); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[ E^E, 10, 110] [[1]]
  • PARI
    exp(exp(1))
    
  • PARI
    { default(realprecision, 20080); x=exp(1)^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073226.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} e^n/n!. - Richard R. Forberg, Dec 29 2013
Equals Product_{n>=0} e^(1/n!). - Amiram Eldar, Jun 29 2020

A073230 Decimal expansion of (1/e)^e.

Original entry on oeis.org

0, 6, 5, 9, 8, 8, 0, 3, 5, 8, 4, 5, 3, 1, 2, 5, 3, 7, 0, 7, 6, 7, 9, 0, 1, 8, 7, 5, 9, 6, 8, 4, 6, 4, 2, 4, 9, 3, 8, 5, 7, 7, 0, 4, 8, 2, 5, 2, 7, 9, 6, 4, 3, 6, 4, 0, 2, 4, 7, 3, 5, 4, 1, 5, 6, 6, 7, 3, 6, 3, 3, 0, 0, 3, 0, 7, 5, 6, 3, 0, 8, 1, 0, 4, 0, 8, 8, 2, 4, 2, 4, 5, 3, 3, 7, 1, 4, 6, 7, 7, 4, 5, 6, 7
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

(1/e)^e = e^(-e) = 1/(e^e) (reciprocal of A073226).
The power tower function f(x)=x^(x^(x^...)) is defined on the closed interval [e^(-e),e^(1/e)]. - Lekraj Beedassy, Mar 17 2005

Examples

			0.06598803584531253707679018759...
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, Solution to problem 8A (Power Tower) p. 240.

Crossrefs

Cf. A001113 (e), A068985 (1/e), A073229 (e^(1/e)), A072364 ((1/e)^(1/e)), A073226 (e^e).

Programs

A072364 Decimal expansion of (1/e)^(1/e).

Original entry on oeis.org

6, 9, 2, 2, 0, 0, 6, 2, 7, 5, 5, 5, 3, 4, 6, 3, 5, 3, 8, 6, 5, 4, 2, 1, 9, 9, 7, 1, 8, 2, 7, 8, 9, 7, 6, 1, 4, 9, 0, 6, 7, 8, 0, 2, 9, 2, 9, 7, 5, 4, 4, 7, 3, 5, 9, 3, 8, 9, 1, 4, 8, 9, 9, 9, 6, 5, 1, 7, 1, 5, 5, 9, 0, 2, 9, 0, 8, 5, 3, 6, 2, 1, 2, 3, 0, 1, 2, 3, 8, 7, 6, 4, 9, 3, 5, 3, 0, 9, 8, 3, 4, 7, 6, 0, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 18 2002

Keywords

Comments

Minimum value of x^x for real x>0.
Also minimum value of 1/x^(1/x) for real x>0 (occurs at e). Equals exp(Pi)/exp(1/exp(1)) * exp(-Pi). - Gerald McGarvey, Sep 21 2004
If (1/e)^(1/e) < y < 1, then x^x = y has two solutions x = a and x = b with 0 < a < 1/e < b < 1. For example, (1/e)^(1/e) < 1/sqrt(2) < 1 and (1/4)^(1/4) = (1/2)^(1/2) = 1/sqrt(2) with 1/4 < 1/e < 1/2. - Jonathan Sondow, Sep 02 2011

Examples

			0.69220062755534635386...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 26, page 233.

Crossrefs

Cf. A068985 (1/e), A001113 (e), A072365 ((1/3)^(1/3)), A073229 (e^(1/e)), A073230 ((1/e)^e).
Cf. also A258707.

Programs

  • Magma
    (Exp(-1))^(Exp(-1)); // G. C. Greubel, May 29 2018
  • Maple
    evalf(exp(-1/exp(1)), 120);  # Alois P. Heinz, Oct 26 2021
  • Mathematica
    RealDigits[E^(-1/E), 10, 111][[1]]
  • PARI
    (1/exp(1))^(1/exp(1))
    
  • PARI
    exp(-1/exp(1)) \\ Charles R Greathouse IV, Sep 01 2011
    

Formula

From Amiram Eldar, Aug 19 2020: (Start)
Equals Sum_{k>=0} (-1)^k/(exp(k)*k!).
Equals Product_{k>=0} exp((-1)^(k+1)/k!). (End)

A252782 a(n) = n-th term of Euler transform of n-th powers.

Original entry on oeis.org

1, 1, 5, 36, 490, 12729, 689896, 70223666, 13803604854, 5567490203192, 4386006155453382, 6711625359213752077, 21048250447828058144403, 131214686495783317936950378, 1603891839732647136012816743764, 40296598014204065945778862754895836
Offset: 0

Views

Author

Alois P. Heinz, Dec 21 2014

Keywords

Crossrefs

Main diagonal of A144048.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
           d*d^k, d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(k^n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)

Formula

a(n) = [x^n] Product_{j>=1} 1/(1-x^j)^(j^n).
Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861... . - Vaclav Kotesovec, Mar 25 2016

A073243 Decimal expansion of exp(-LambertW(log(Pi))), solution to x = 1/Pi^x.

Original entry on oeis.org

5, 3, 9, 3, 4, 3, 4, 9, 8, 8, 6, 2, 3, 0, 1, 2, 0, 8, 0, 6, 0, 7, 9, 5, 6, 8, 4, 4, 5, 5, 5, 9, 8, 4, 2, 0, 9, 8, 6, 4, 5, 5, 9, 7, 3, 2, 9, 4, 8, 4, 2, 6, 1, 1, 9, 4, 8, 8, 1, 5, 0, 1, 4, 8, 7, 0, 4, 6, 2, 7, 5, 4, 0, 1, 7, 4, 9, 0, 4, 5, 5, 5, 2, 8, 4, 1, 5, 2, 4, 2, 9, 3, 6, 8, 1, 7, 6, 7, 7, 3, 5, 4, 0, 2
Offset: 0

Views

Author

Rick L. Shepherd, Jul 28 2002

Keywords

Comments

Original definition: Limit of (1/Pi)^...^(1/Pi), n times, as n approaches infinity. Equals exp(-LambertW(log(Pi))).
The value can be obtained by iterating x -> 1/Pi^x with any real starting value, but convergence is linear and slow: about 5 iterations are needed for each additional decimal digit. - M. F. Hasler, Nov 01 2011
According to the Weisstein link, infinite iterated exponentiation such as used here, which is referred to both as an "infinite power tower" and "h(x)" -- with graph and other notations -- "converges iff e^(-e) <= x <= e^(1/e) as shown by Euler (1783) and Eisenstein (1844)" (citing Le Lionnais and Wells references). e^(-e) = A073230. e^(1/e) = A073229. x of interest here = 1/Pi = A049541. (1/A073243)^(1/A073243) = A030437^A030437 = Pi.
If y = h(x) = x^x^x^... converges, then by substitution y = x^y. So x^x^x^... is a solution y to the equation y^(1/y) = x. - Jonathan Sondow, Aug 27 2011
The expressions involving "..." in the above comment are misleading, since the limit is not obtained by applying additional "^x" to the previous expression, i.e., iterating "t -> t^x", but corresponds to iterations of "t -> x^t". - M. F. Hasler, Nov 01 2011

Examples

			0.53934349886230120806079568445...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073240 ((1/Pi)^(1/Pi)), A073241 ((1/Pi)^(1/Pi)^(1/Pi)), A030437 (reciprocal of A073243), A030178 (corresponding limit for 1/e), A030797 (reciprocal of A030178).

Programs

  • Mathematica
    y /. FindRoot[y^(1/y) == 1/Pi, {y, 1}, WorkingPrecision -> 100] (* Jonathan Sondow, Aug 27 2011 *)
    First[RealDigits[Exp[-ProductLog[Log[Pi]]], 10, 104]] (* Vladimir Reshetnikov, Nov 01 2011 *)
  • PARI
    /* The program below was run with precision set to 1000 digits */ /* n is the number of iterated exponentiations performed. */ /* (n turns out to be 954 with 1E-200 specified here) */ n=0; s=1/Pi; t=1; while(abs(t-s)>1E-200, t=s; s=(1/Pi)^s; n++); print(n,",",s)
    
  • PARI
    solve(x=0,1,x-1/Pi^x)  \\ M. F. Hasler, Nov 01 2011

Formula

x = LambertW(log(Pi))/log(Pi), solution to Pi^x=1/x. - M. F. Hasler, Nov 01 2011

A332408 a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 - k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A073229 = exp(exp(-1)). - Vaclav Kotesovec, Feb 20 2021
E.g.f.: Sum_{k>=0} (k*x*exp(x))^k. - Seiichi Manyama, Feb 19 2022

A061481 a(n) = floor(e^(n/e)).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 18, 27, 39, 57, 82, 119, 172, 249, 359, 520, 751, 1085, 1568, 2265, 3272, 4727, 6830, 9867, 14255, 20593, 29751, 42980, 62092, 89703, 129591, 187216, 270465, 390733, 564479, 815485, 1178106, 1701972, 2458784, 3552126, 5131643
Offset: 0

Views

Author

Amarnath Murthy, May 05 2001

Keywords

Comments

Integer part of the maximal product possible among numbers (not restricted to integers) that sum to n. Note that a(n) >= A000792(n).
Ignoring the first term, for n >= 1, 1,2,3,4,6,9,... is the maximal integer such that its positive real n-th root in an infinite power tower converges to a limit; e.g., for n=5, 6 is the maximal such integer and (6^(1/5))^((6^(1/5))^((6^(1/5))^(...))) converges (to 2.1991359...). Similar infinite power towers with the 5th roots of 1,2,3,4,5, respectively also converge. See comments and links associated with A073229 and A073230. These terms are also the numbers of such converging infinite power towers composed of n-th roots of positive integers. Disregarding the trivial power tower of 1s, 2 is the unique positive integer whose infinite power tower of its square root converges; the limit is 2 itself. - Rick L. Shepherd, Sep 30 2007

Crossrefs

Programs

  • Mathematica
    Table[ Floor[E^(n/E)], {n, 0, 35}] (* Robert G. Wilson v, Oct 23 2004 *)
  • PARI
    { default(realprecision, 100); e=exp(1); for (n=0, 500, write("b061481.txt", n, " ", floor(e^(n/e))) ) } \\ Harry J. Smith, Jul 23 2009

A107586 Powers of e^(1/e) rounded up.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 14, 19, 28, 40, 58, 83, 120, 173, 250, 360, 521, 752, 1086, 1569, 2266, 3273, 4728, 6831, 9868, 14256, 20594, 29752, 42981, 62093, 89704, 129592, 187217, 270466, 390734, 564480, 815486, 1178107, 1701973, 2458785, 3552127, 5131644, 7413521
Offset: 0

Views

Author

Henry Bottomley, May 16 2005

Keywords

Comments

Smallest integer such that a(n)^x-x^n is nonnegative for all nonnegative reals x.

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(E^(1/E))^n],{n,0,43}] (* James C. McMahon, Feb 12 2024 *)

A175999 Decimal expansion of the definite integral of x^(1/x) for x = 0 to 1.

Original entry on oeis.org

3, 5, 3, 4, 9, 6, 8, 0, 0, 7, 0, 1, 4, 2, 2, 0, 5, 5, 4, 6, 5, 8, 3, 6, 3, 7, 0, 2, 0, 6, 6, 9, 8, 2, 4, 5, 0, 9, 0, 2, 5, 6, 8, 0, 0, 8, 0, 8, 7, 7, 3, 9, 9, 3, 8, 0, 7, 8, 0, 7, 9, 2, 4, 6, 0, 7, 8, 0, 0, 1, 8, 4, 5, 9, 7, 0, 0, 2, 5, 3, 3, 9, 0, 4, 0, 4, 0, 2, 9, 0, 6, 4, 2, 7, 6, 5, 0, 9, 1, 9, 5, 2, 3, 2, 6
Offset: 0

Views

Author

Dylan Hamilton, Nov 05 2010

Keywords

Examples

			0.3534968007014220554658363702066982450902568008087739938078079246078001845970...
		

Crossrefs

Cf. A073229 (decimal expansion of e^(1/e)).

Programs

  • Mathematica
    RealDigits[ NIntegrate[x^(1/x), {x, 0, 1}, WorkingPrecision -> 128], 10, 111][[1]] (* Robert G. Wilson v, Mar 10 2013 *)
  • PARI
    intnum(x=exp(-lambertw(default(realbitprecision)*log(2)+2)),1,x^x^-1) \\ Charles R Greathouse IV, Feb 23 2022
    
  • PARI
    intnum(x=1e-9,1,x^x^-1) \\ good for up to 29 billion digits; Charles R Greathouse IV, Feb 23 2022
Showing 1-10 of 31 results. Next