cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A017984 Powers of cube root of 3 rounded up.

Original entry on oeis.org

1, 2, 3, 3, 5, 7, 9, 13, 19, 27, 39, 57, 81, 117, 169, 243, 351, 506, 729, 1052, 1517, 2187, 3155, 4550, 6561, 9463, 13648, 19683, 28388, 40943, 59049, 85164, 122827, 177147, 255491, 368481, 531441, 766471, 1105442, 1594323, 2299412, 3316326, 4782969, 6898235
Offset: 0

Views

Author

Keywords

Comments

Smallest integer such that a(n)^k-k^n is nonnegative for all nonnegative integers k. - Henry Bottomley, May 16 2005

Crossrefs

Cf. A107586 and powers of cube root of k ceiling up: A017981 (k=2), this sequence (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 09 2014

A061481 a(n) = floor(e^(n/e)).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 18, 27, 39, 57, 82, 119, 172, 249, 359, 520, 751, 1085, 1568, 2265, 3272, 4727, 6830, 9867, 14255, 20593, 29751, 42980, 62092, 89703, 129591, 187216, 270465, 390733, 564479, 815485, 1178106, 1701972, 2458784, 3552126, 5131643
Offset: 0

Views

Author

Amarnath Murthy, May 05 2001

Keywords

Comments

Integer part of the maximal product possible among numbers (not restricted to integers) that sum to n. Note that a(n) >= A000792(n).
Ignoring the first term, for n >= 1, 1,2,3,4,6,9,... is the maximal integer such that its positive real n-th root in an infinite power tower converges to a limit; e.g., for n=5, 6 is the maximal such integer and (6^(1/5))^((6^(1/5))^((6^(1/5))^(...))) converges (to 2.1991359...). Similar infinite power towers with the 5th roots of 1,2,3,4,5, respectively also converge. See comments and links associated with A073229 and A073230. These terms are also the numbers of such converging infinite power towers composed of n-th roots of positive integers. Disregarding the trivial power tower of 1s, 2 is the unique positive integer whose infinite power tower of its square root converges; the limit is 2 itself. - Rick L. Shepherd, Sep 30 2007

Crossrefs

Programs

  • Mathematica
    Table[ Floor[E^(n/E)], {n, 0, 35}] (* Robert G. Wilson v, Oct 23 2004 *)
  • PARI
    { default(realprecision, 100); e=exp(1); for (n=0, 500, write("b061481.txt", n, " ", floor(e^(n/e))) ) } \\ Harry J. Smith, Jul 23 2009

A116938 Expansion of e^2 in base 2.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0
Offset: 3

Views

Author

Jonathan Vos Post, Mar 21 2006

Keywords

Examples

			111.010001000000 (base 2) ~ 7.389056098930650... (base 10) ~ e^2. 100 decimal places precision here.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
  • Eli Maor, e: The Story of a Number, Princeton Univ. Press, 1994.

Crossrefs

Cf. A001113 (e), A072334 (e^2), A090142 (e^2-e).
Cf. A090143 (e^3-2e^2+e/2), A089139 (e^4-3e^3+2e^2-e/6), A090143 (e^3-2e^2+e/2).
Cf. A001671 (powers of e rounded up), A107586 (powers of e^(1/e) rounded up).

Programs

Showing 1-3 of 3 results.