cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Stefan Steinerberger

Stefan Steinerberger's wiki page.

Stefan Steinerberger has authored 29 sequences. Here are the ten most recent ones:

A347520 A053392 with duplicates removed.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 32, 33, 34, 35, 36, 37, 38, 39, 310, 311, 43, 44, 45, 46, 47, 48, 49, 410, 411, 412, 54, 55, 56, 57, 58, 59
Offset: 0

Author

Stefan Steinerberger, Sep 04 2021

Keywords

Crossrefs

Cf. A053392.

Programs

  • Mathematica
    a[n_] := Total /@ Transpose[{Most[id = IntegerDigits[n]], Rest[id]}] //
         IntegerDigits // Flatten // FromDigits; DeleteDuplicates[Table[a[n], {n, 0, 1000}]]
  • Python
    # uses A053392
    from collections import OrderedDict
    def afiltern(terms):
        return list(OrderedDict.fromkeys(A053392(k) for k in range(terms)))
    print(afiltern(179)) # Michael S. Branicky, Sep 04 2021

A114575 Number of distinct prime factors of floor(e^n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 3, 2, 4, 2, 4, 4, 1, 5, 2, 3, 2, 4, 2, 3, 3, 3, 4, 3, 3, 2, 5, 5, 3, 7, 4, 3, 3, 4, 5, 2, 5, 4, 3, 6, 5, 3, 4, 4, 1, 4, 5, 5, 6, 4, 5, 6, 3, 4, 2, 4, 5, 7, 9, 3, 6, 7, 8, 5, 3, 5, 7, 5, 5, 7, 3, 5, 6, 6, 6
Offset: 0

Author

Stefan Steinerberger, Feb 17 2006

Keywords

Examples

			floor(e^3) = floor(20.08553) = 20. 20 has two distinct prime factors (2 and 5), therefore a(3) = 2.
		

Crossrefs

Cf. A001113 [decimal expansion of e].

Programs

  • Mathematica
    Table[Length[FactorInteger[Floor[E^n]]], {n, 1, 80}]
    PrimeNu[Floor[E^Range[80]]] (* Harvey P. Dale, Jul 21 2013 *)

A114427 Decimal expansion of the real solution of x^3-x^2-x-4=0.

Original entry on oeis.org

2, 2, 4, 1, 8, 9, 6, 5, 6, 3, 0, 3, 4, 4, 7, 9, 8, 5, 5, 7, 8, 9, 4, 9, 2, 5, 0, 2, 6, 6, 9, 4, 9, 8, 5, 0, 3, 2, 4, 5, 6, 7, 6, 8, 4, 3, 1, 6, 6, 4, 9, 5, 6, 6, 2, 3, 5, 8, 8, 6, 5, 0, 1, 4, 0, 4, 2, 3, 9, 2, 2, 7, 4, 5, 7, 7, 4, 5, 6, 8, 8, 7, 7, 0, 5, 9, 0, 4, 6, 8, 4, 5, 0, 7, 4, 7, 8, 1, 4, 5, 6, 9, 5, 6, 1
Offset: 1

Author

Stefan Steinerberger, Feb 13 2006

Keywords

Comments

The solution of the equation is twice the value of a lower bound on randomly generated Fibonacci-like sequences.

Examples

			The solution of the equation is 2.2418965630344798557894...
		

Crossrefs

Cf. A114431.

Programs

  • Mathematica
    RealDigits[1/3 (1+(1/2 (119-3 Sqrt[1545]))^(1/3)+(1/2 (119+3 Sqrt[ 1545]))^(1/3)),10,120][[1]] (* Harvey P. Dale, Jun 09 2011 *)

A114594 Decimal expansion of (e^Pi)*(Pi^e).

Original entry on oeis.org

5, 1, 9, 7, 2, 0, 4, 6, 5, 5, 5, 1, 7, 0, 5, 1, 0, 1, 6, 0, 7, 4, 5, 2, 6, 0, 0, 6, 7, 3, 3, 2, 8, 5, 3, 5, 9, 6, 8, 3, 9, 2, 2, 0, 1, 4, 0, 7, 3, 8, 2, 1, 4, 7, 7, 4, 0, 3, 2, 0, 3, 8, 9, 2, 4, 6, 9, 7, 9, 1, 6, 4, 4, 5, 3, 4, 5, 4, 9, 9, 5, 0, 4, 3, 1, 2, 9, 2, 2, 0, 8, 3, 9, 1, 3, 0, 3, 1, 0, 0
Offset: 3

Author

Stefan Steinerberger, Feb 21 2006

Keywords

Examples

			(e^Pi)*(Pi^e) is 519.7204655517051016...
		

Crossrefs

Cf. A019314 (sum of e^Pi and Pi^e).

Programs

  • Mathematica
    a := N[E^Pi*Pi^E, 500]; Table[Floor[10^(n - 3)*a] - 10*Floor[10^(n - 4)*a], {n, 1, 100}] (* valid for the first 500 digits *)
    RealDigits[N[Pi^E*E^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)

A117672 Numbers n such that |cos(n)*cos(n+2)| < (cos(n+1))^2.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 21, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 43, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 87, 90, 91, 93, 94, 96, 97, 99, 100, 102, 103, 105, 106, 109, 112, 113, 115
Offset: 1

Author

Stefan Steinerberger, Apr 12 2006

Keywords

Comments

What is the density of the sequence? I am convinced that this sequence has the same density as A026313.

Examples

			|cos(5)*cos(7)| < (cos(6))^2, therefore 5 is in the sequence.
		

Crossrefs

Cf. A026313 [same definition with sin instead of cos].

Programs

  • Mathematica
    Select[Range[120], Abs[Cos[ # ]*Cos[ # + 2]] < Cos[ # + 1]^2 &]

Extensions

Offset corrected by Sean A. Irvine, Sep 25 2019

A114573 Numbers k such that phi(k) is a perfect 11th power.

Original entry on oeis.org

1, 2, 3855, 4096, 4112, 4352, 5120, 5140, 5440, 6144, 6168, 6528, 7680, 7710, 8160, 5570645, 8388608, 8388736, 8421376, 8912896, 8913032, 8947712, 10485760, 10485920, 10526720, 11141120, 11141290, 11184640, 12582912, 12583104
Offset: 1

Author

Stefan Steinerberger, Feb 17 2006

Keywords

Comments

Given the fact that phi(n) > sqrt(n) for all n except n=2 and n=6 we can see that every 11th power does appear as value only a finite number of times. What bounds on the density of this sequence can be proved?

Examples

			phi(4096) = 2048 = 2^11.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power), A000010.

Programs

  • Mathematica
    For[n = 1, n < 100000, n++, If[EulerPhi[n]^(1/11) == Floor[EulerPhi[n]^(1/11)], Print[n]]]

Extensions

More terms from Stefan Steinerberger, May 16 2007

A114431 Decimal expansion of the real solution of x^3 - x^2 - 2x - 4 = 0.

Original entry on oeis.org

2, 4, 6, 7, 5, 0, 3, 8, 5, 7, 0, 5, 6, 5, 1, 7, 5, 7, 6, 3, 8, 1, 8, 8, 6, 7, 5, 5, 3, 5, 8, 7, 8, 6, 0, 7, 0, 3, 8, 2, 2, 5, 4, 4, 7, 5, 0, 6, 2, 3, 7, 2, 9, 8, 8, 4, 6, 4, 0, 1, 9, 7, 7, 4, 0, 5, 5, 0, 7, 5, 1, 9, 3, 5, 9, 1, 7, 7, 3, 3, 9, 7, 1, 5, 8, 1, 5, 9, 5, 1, 6, 3, 4, 9, 2, 3, 8, 6, 3, 5, 7, 5, 3, 9, 3
Offset: 0

Author

Stefan Steinerberger, Feb 13 2006

Keywords

Comments

The solution of the equation is twice the value of an upper bound on randomly generated Fibonacci-like sequences.
Also, 1/log_2(x), where x is this constant, is the exponent in the exponent of the growth rate of the first Grigorchuk group. - Andrey Zabolotskiy, Apr 14 2020

Crossrefs

Cf. A114427.

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^3 - x^2 - 2x == 4, {x, 2}, WorkingPrecision -> 120], 10, 120] [[1]] (* or *) RealDigits[(1 + Surd[64 - 3 * Sqrt[417], 3] + Surd[64 + 3 * Sqrt[417], 3])/3, 10, 120][[1]] (* Harvey P. Dale, Dec 02 2017 *)
  • PARI
    default(realprecision, 105); 1/3*(1+(64-3*sqrt(417))^(1/3)+(64+3*sqrt(417))^(1/3)) \\ Michel Marcus, Jun 14 2013

A114941 Decimal expansion of the infinite sum Sum_{k>=1} cos(k)/k!.

Original entry on oeis.org

1, 4, 3, 8, 3, 5, 6, 4, 3, 7, 9, 1, 6, 4, 0, 3, 2, 5, 9, 0, 6, 6, 4, 7, 3, 4, 3, 9, 6, 7, 9, 0, 2, 0, 2, 8, 0, 3, 0, 4, 5, 9, 0, 9, 3, 5, 8, 5, 5, 3, 0, 0, 3, 2, 3, 9, 3, 2, 0, 6, 1, 3, 0, 0, 6, 5, 7, 4, 5, 9, 9, 8, 7, 4, 2, 3, 6, 2, 1, 8, 5, 1, 6, 2, 6, 3, 0, 1, 5, 1, 5, 1, 6, 9, 0, 2, 9, 3, 8, 0, 0, 3, 1, 1
Offset: 0

Author

Stefan Steinerberger, Feb 21 2006

Keywords

Examples

			0.143835643791640325906...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[N[Cos[i],400]/i!, {i,1,300}]][[1]] (*which is accurate to 300 digits*) (* corrected by Harvey P. Dale, Nov 29 2011 *)
  • PARI
    suminf(k=1, cos(k)/k!) \\ Michel Marcus, Jul 19 2020

Formula

From Amiram Eldar, Jul 19 2020: (Start)
Equals e^cos(1) * cos(sin(1)) - 1.
Equals cos(sin(1)) * (cosh(cos(1)) + sinh(cos(1))) - 1.
Equals (e^(e^i) + e^(e^(-i)))/2 - 1. (End)

A115566 Numbers k such that 2^k, 2^(k+1) and 2^(k+2) have the same number of digits.

Original entry on oeis.org

1, 4, 7, 10, 11, 14, 17, 20, 21, 24, 27, 30, 31, 34, 37, 40, 41, 44, 47, 50, 51, 54, 57, 60, 61, 64, 67, 70, 71, 74, 77, 80, 81, 84, 87, 90, 91, 94, 97, 100, 103, 104, 107, 110, 113, 114, 117, 120, 123, 124, 127, 130, 133, 134, 137, 140, 143, 144, 147, 150, 153, 154
Offset: 1

Author

Stefan Steinerberger, Mar 11 2006

Keywords

Comments

The density of this sequence is 1 - 2*log_10(2) = 0.3979400086720376...

Examples

			2^4 = 16, 2^5 = 32, 2^6 = 64: all these numbers have two digits.
2^10 = 1024, 2^11 = 2048, 2^12 = 4096: all these numbers have three digits.
		

Crossrefs

Cf. A001682 (same definition with 3 instead of 2).
Cf. A034887 (number of digits in 2^n).

Programs

  • Magma
    [k:k in [1..160]|#Intseq(2^k) eq #Intseq(2^(k+2))]; // Marius A. Burtea, May 20 2019
  • Maple
    select(n -> ilog10(2^n)=ilog10(2^(n+2)), [$1..1000]); # Robert Israel, May 19 2019
  • Mathematica
    Select[Range[220], Floor[Log[10, 2]*# ] == Floor[Log[10, 2]*(# + 2)] &]

Formula

floor(log_10(2)*k) = floor(log_10(2)*(k+1)) = floor(log_10(2)*(k+2)).

A113887 Numbers n such that floor(exp(sqrt(n))) is a prime number.

Original entry on oeis.org

1, 3, 4, 6, 10, 12, 17, 21, 26, 30, 53, 54, 58, 83, 95, 109, 111, 128, 131, 137, 145, 157, 165, 166, 181, 195, 202, 244, 261, 265, 290, 306, 324, 343, 353, 369, 386, 415, 417, 418, 438, 468, 473, 503, 633, 704, 735, 758, 859, 903, 919, 955, 979, 987, 1008, 1016
Offset: 1

Author

Stefan Steinerberger, Jan 28 2006

Keywords

Crossrefs

Cf. A050808.

Programs

Extensions

More terms from Robert G. Wilson v, Jan 30 2006