A370393 Decimal expansion of the area of a unit heptadecagon (17-gon).
2, 2, 7, 3, 5, 4, 9, 1, 8, 9, 8, 4, 1, 6, 5, 5, 1, 4, 8, 2, 4, 2, 3, 7, 2, 3, 8, 7, 3, 9, 3, 7, 6, 3, 5, 7, 6, 1, 0, 6, 4, 1, 9, 9, 1, 4, 6, 9, 3, 3, 0, 9, 8, 8, 6, 0, 3, 5, 6, 5, 9, 4, 4, 0, 3, 9, 7, 2, 3, 2, 5, 1, 4, 8, 7, 9, 6, 7, 7, 7, 5, 7, 4, 7, 6, 4, 6
Offset: 2
Examples
22.7354918984165514...
Links
- Eric Weisstein's World of Mathematics, Heptadecagon.
- Wikipedia, Heptadecagon.
Crossrefs
Programs
-
Maple
evalf(17 / (4 * tan(Pi/17)), 100);
-
Mathematica
RealDigits[17 / (4 * Tan[Pi/17]), 10, 100][[1]]
-
PARI
17 / (4 * tan(Pi/17))
Formula
Equals 17 / (4 * tan(Pi/17)) = 17 / (4 * A343061).
Equals 17 * cos(Pi/17) / (4 * sin(Pi/17)).
Equals 17 * cot(Pi/17) / 4.
Equals 17 * sqrt(4 / (s^2 - 2 * s - 4 * sqrt(17 + 3 * sqrt(17) - s - sqrt(17) * 16/s)) - 1/16) where s = sqrt(34 - 2 * sqrt(17)) = 4 * A329592.
The minimal polynomial is 4294967296*x^16 - 3103113871360*x^14 + 510054948143104*x^12 - 28954726431195136*x^10 + 653743432704327680*x^8 - 6011468019822067712*x^6 + 20881180982314634240*x^4 - 21552361799603318912*x^2 + 2862423051509815793.
Comments