A377522 Decimal expansion of 1/3 - sqrt(3)/(4*Pi).
1, 9, 5, 5, 0, 1, 1, 0, 9, 4, 7, 7, 8, 8, 5, 3, 2, 0, 9, 5, 5, 5, 0, 1, 7, 0, 8, 7, 5, 5, 0, 9, 0, 9, 7, 2, 9, 8, 3, 9, 8, 6, 7, 1, 3, 2, 4, 1, 6, 7, 3, 1, 7, 0, 1, 3, 3, 4, 9, 1, 8, 2, 8, 2, 6, 0, 5, 7, 5, 7, 5, 7, 4, 6, 6, 0, 1, 5, 8, 8, 4, 6, 2, 3, 2, 3, 8
Offset: 0
Examples
0.1955011094778853209555017087550909729839867132416731701334918282605757574660158846...
Links
- Joshua Searle and others, Overlapping Hyperspheres, discussion in SeqFan mailing list, Oct 29, 2024.
- Wikipedia, Spherical Cap
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[1/3 - Sqrt[3]/(4*Pi), 10, 120][[1]] (* Amiram Eldar, Oct 31 2024 *)
-
PARI
A377522_upto(n)={localprec(n+++9);digits(10^n*(4/3-sqrt(3)/Pi)\4)} \\ M. F. Hasler, Oct 31 2024
-
Python
from sympy import S, betainc_regularized, hyper f = lambda n: betainc_regularized(S(n-1)/2, S(1)/2, 0, S(3)/4).rewrite(hyper).gammasimp().simplify().expand()/2 f(4).n(99) # decimal expansion [int(d) for d in str(_)[2:-1]] # digits, omitting "0." and last (could be rounded) # M. F. Hasler, Oct 31 2024
Formula
Equals (1/2) * I(3/4; 3/2, 1/2).
Comments