cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jason Kimberley

Jason Kimberley's wiki page.

Jason Kimberley has authored 228 sequences. Here are the ten most recent ones:

A304484 a(n) = A033270(n)*A033270(2n), where A033270 counts the odd primes.

Original entry on oeis.org

0, 0, 2, 3, 6, 8, 15, 15, 18, 21, 28, 32, 40, 40, 45, 50, 60, 60, 77, 77, 84, 91, 104, 112, 112, 112, 120, 120, 135, 144, 170, 170, 170, 180, 180, 190, 220, 220, 220, 231, 252, 264, 286, 286, 299, 299, 322, 322, 336, 336, 350, 364, 390, 405, 420, 420, 435, 435, 464, 464
Offset: 1

Author

Jason Kimberley, May 15 2018

Keywords

Crossrefs

Cf. A304483 = A000720(n)*A000720(2n).

Programs

  • Magma
    A033270:=func; A:=[A033270(n):n in[1..120]]; [A[n]*A[2*n]:n in[1..#A div 2]];
    
  • Mathematica
    Array[(PrimePi@ # - Boole[# > 1]) (PrimePi[2 #] - Boole[2 # > 1]) &, 60] (* Michael De Vlieger, May 27 2018 *)
  • PARI
    a033270(n) = max(primepi(n)-1, 0);
    a(n) = a033270(n)*a033270(2*n);

A304483 a(n) = pi(n)*pi(2n), where pi is A000720: the prime counting function.

Original entry on oeis.org

0, 2, 6, 8, 12, 15, 24, 24, 28, 32, 40, 45, 54, 54, 60, 66, 77, 77, 96, 96, 104, 112, 126, 135, 135, 135, 144, 144, 160, 170, 198, 198, 198, 209, 209, 220, 252, 252, 252, 264, 286, 299, 322, 322, 336, 336, 360, 360, 375, 375, 390, 405, 432, 448, 464, 464, 480, 480, 510
Offset: 1

Author

Jason Kimberley, May 13 2018

Keywords

Crossrefs

Programs

A290340 Numbers m such that each of the four consecutive integers m, m+1, m+2, m+3 has squarefree rank 1.

Original entry on oeis.org

17, 241, 242, 1249, 4049, 4799, 17297, 120049, 206081, 281249, 388961, 470447, 538721, 1462049, 1566449, 1808801, 1916881, 3302449, 3302450, 3693761, 3959297, 5385761, 5664976, 6118001, 6986321, 9305297, 10479041, 14268481, 16831601, 20110481, 22997761, 27661922, 28140001
Offset: 1

Author

Jason Kimberley, Jul 27 2017

Keywords

Comments

A162642(k) is the squarefree rank of k.
Numbers that are the first of four consecutive terms of A228056 form a subsequence: 242, 3302450, 22997761, 27661922, 28140001, 64866050, ... consisting of those numbers m in this sequence such that m, m+1, m+2, and m+3 are all composite. - Charles R Greathouse IV, Sep 30 2021
One of for positive integer m, m+1, m+2, m+3 is of the form 4*k + 2 = 2*(2*k + 1). As 2 has an odd exponent the exponents in the prime factorization and 2*k + 1 is odd, the number of odd exponents in the prime factorization of 2*k + 1 must be 0 i.e., 2*k + 1 is a perfect square and so one of m, m+1, m+2, m+3 is of the form 2*t^2 where t is an odd square. - David A. Corneth, Nov 09 2023

Examples

			m = 17 is in the sequence as the number of odd prime exponents of each of the numbers m = 17 through m + 3 = 20 is 1. - _David A. Corneth_, Nov 06 2023
		

Crossrefs

Programs

  • Magma
    A162642:=func;
    c:=func;
    c(c(c([n:n in[1..10^6]|A162642(n)eq 1])));
    
  • PARI
    list(lim)=my(u=vectorsmall(4),v=List(),s,i); forfactored(n=2,lim\1+3, if(i++>4,i=1); s-=u[i]; s+=u[i]=(vecsum(n[2][,2]%2)==1); if(s==4, listput(v,n[1]-3))); Vec(v); \\ Charles R Greathouse IV, Sep 30 2021
    
  • PARI
    \\ See PARI link

A278118 Irregular triangle T(n,k) = A278113(n,k) for 1 <= k <= A278116(n), read by rows.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 4, 3, 2, 6, 4, 3, 7, 5, 8, 6, 9, 7, 5, 4, 3, 10, 8, 6, 5, 11, 8, 6, 5, 12, 9, 13, 10, 14, 11, 8, 15, 12, 9, 16, 13, 10, 8, 6, 17, 13, 10, 18, 14, 19, 15, 20, 16, 12, 10, 21, 17, 13, 22, 17, 13, 23, 18, 24, 19, 25, 20, 15, 26, 21, 16, 13, 27, 22, 17, 14, 11, 10
Offset: 1

Author

Jason Kimberley, Feb 12 2017

Keywords

Comments

This triangle lists the "descending sequences for rank 1" of Eggleton et al.

Examples

			For example, 6 sqrt(2) > 4 sqrt(3) > 3 sqrt(5), because 72 > 48 > 45.
The first six rows are:
1;
2, 1;
3, 2, 1;
4, 3, 2;
5, 4, 3, 2;
6, 4, 3;
		

References

  • R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.

Crossrefs

Cf. A278104.

Programs

  • Magma
    A278112:=func;
    A278115_row:=funcA278112(n,p)^2*p:p in PrimesUpTo(2*n^2)]>;
    A278116:=funcA278115_row(n)>;
    A278118_row:=funcA278112(n,NthPrime(k)):k in[1..A278116(n)]]>;
    [A278118_row(n):n in[1..20]];
  • Mathematica
    Function[w, MapIndexed[Take[w[[First@ #2, 1]], 1 + Length@ TakeWhile[ Differences@ #1, # < 0 &]] &, w[[All, -1]]]]@ Table[Function[k, Function[p, {#, p #^2} &@ Floor[n Sqrt[2/p]]]@ Prime@ k]@ Range@ PrimePi[2 n^2], {n, 27}] (* Michael De Vlieger, Feb 17 2017 *)

Formula

From A278113: T(n,k) sqrt(prime(k)) <= n sqrt(2) < (T(n,k)+1) sqrt(prime(k)).
Here, we also have:
T(n,1) sqrt(2) > T(n,2) sqrt(3) > ... > T(n,A278116(n)) sqrt(prime(A278116(n))).

A278117 Irregular triangle T(n,k) = A278115(n,k) for 1 <= k <= A278116(n), read by rows.

Original entry on oeis.org

2, 8, 3, 18, 12, 5, 32, 27, 20, 50, 48, 45, 28, 72, 48, 45, 98, 75, 128, 108, 162, 147, 125, 112, 99, 200, 192, 180, 175, 242, 192, 180, 175, 288, 243, 338, 300, 392, 363, 320, 450, 432, 405, 512, 507, 500, 448, 396, 578, 507, 500, 648, 588, 722, 675, 800, 768, 720
Offset: 1

Author

Jason Kimberley, Feb 12 2017

Keywords

Comments

Each row is the longest strictly decreasing prefix of the corresponding row of A278115.

Examples

			The first six rows are:
2;
8, 3;
18, 12, 5;
32, 27, 20;
50, 48, 45, 28;
72, 48, 45;
		

Crossrefs

Programs

  • Magma
    A278112:=func;
    A278115_row:=funcA278112(n,p)^2*p:p in PrimesUpTo(2*n^2)]>;
    A278117_row:=funcA278115_row(n) >;
    &cat[A278117_row(n):n in[1..20]];
  • Mathematica
    Map[Take[#, 1 + Length@ TakeWhile[Differences@ #, # < 0 &]] &, #] &@ Table[# Floor[n Sqrt[2/#]]^2 &@ Prime@ k, {n, 20}, {k, PrimePi[2 n^2]}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)

A278115 Triangle T(n,k) = A278113(n,k)^2 A000040(k) for 1 <= k <= A278114(n), read by rows.

Original entry on oeis.org

2, 8, 3, 5, 7, 18, 12, 5, 7, 11, 13, 17, 32, 27, 20, 28, 11, 13, 17, 19, 23, 29, 31, 50, 48, 45, 28, 44, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 72, 48, 45, 63, 44, 52, 68, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 98, 75, 80, 63, 44, 52, 68, 76, 92, 29, 31, 37, 41, 43, 47, 53
Offset: 1

Author

Jason Kimberley, Feb 10 2017

Keywords

Examples

			The first six rows are:
2;
8, 3, 5, 7;
18, 12, 5, 7, 11, 13, 17;
32, 27, 20, 28, 11, 13, 17, 19, 23, 29, 31;
50, 48, 45, 28, 44, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47;
72, 48, 45, 63, 44, 52, 68, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71;
		

Crossrefs

Cf. A278101.

Programs

  • Magma
    A278112:=func;
    A278115_row:=funcA278112(n,p)^2*p:p in PrimesUpTo(2*n^2)]>;
    &cat[A278115_row(n):n in[1..7]];
  • Mathematica
    Table[# Floor[n Sqrt[2/#]]^2 &@ Prime@ k, {n, 7}, {k, PrimePi[2 n^2]}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)

Formula

T(n,k) = prime(k) * floor(n*sqrt(2/prime(k)))^2.

A278114 Number of primes <= 2n^2.

Original entry on oeis.org

1, 4, 7, 11, 15, 20, 25, 31, 37, 46, 53, 61, 68, 77, 87, 97, 106, 118, 128, 139, 152, 163, 177, 190, 204, 217, 231, 247, 263, 278, 293, 309, 326, 344, 363, 377, 399, 418, 436, 452, 474, 492, 516, 536, 558, 580, 600, 623, 647, 669, 692, 713, 738, 765, 789, 816, 842, 867
Offset: 1

Author

Jason Kimberley, Feb 09 2017

Keywords

Comments

This is the row length sequence for both A278113 and A278115.

Crossrefs

Programs

Formula

a(n) = A000720(A001105(n)).

A278113 Triangle T(n,k) = A278112(n,A000040(k)) for 1 <= k <= A278114(n), read by rows.

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Author

Jason Kimberley, Feb 09 2017

Keywords

Comments

This triangle consists of those columns of A278112 that have prime index.

Examples

			The first eight rows are:
  1;
  2, 1, 1, 1;
  3, 2, 1, 1, 1, 1, 1;
  4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  7, 5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Programs

  • Magma
    A278112:=func;
    A278113_row:=funcA278112(n,p):p in PrimesUpTo(2*n^2)]>;
    &cat[A278113_row(n):n in[1..8]];
  • Mathematica
    Table[Floor[n Sqrt[2/Prime@ k]], {n, 8}, {k, PrimePi[2 n^2]}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)

Formula

T(n,k) = floor(n*sqrt(2/prime(k))).
T(n,k) sqrt(A000040(k)) <= n sqrt(2) < (T(n,k)+1) sqrt(A000040(k)).

A278112 Triangle T(n,k) = floor(n sqrt(2/k)) for 1 <= k <= 2n^2, read by rows.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Author

Jason Kimberley, Feb 09 2017

Keywords

Examples

			The first five rows are:
1, 1;
2, 2, 1, 1, 1, 1, 1, 1;
4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. A277647.

Programs

  • Magma
    A278112:=func;
    [[A278112(n,k):k in[1..2*n^2]]:n in[1..5]];
  • Mathematica
    Table[Floor[n Sqrt[2/k]], {n, 5}, {k, 2 n^2}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)

Formula

T(n,k) = A000196(A278111(n)).
T(n,k)sqrt(k) <= n sqrt(2) < (T(n,k)+1)sqrt(k).

A278111 Triangle T(n,k) = floor(2n^2/k) for 1 <= k <= 2n^2, read by rows.

Original entry on oeis.org

2, 1, 8, 4, 2, 2, 1, 1, 1, 1, 18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 32, 16, 10, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 50, 25, 16, 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Author

Jason Kimberley, Feb 08 2017

Keywords

Examples

			The first five rows are:
2, 1;
8, 4, 2, 2, 1, 1, 1, 1;
18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
32, 16, 10, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
50, 25, 16, 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. A277646.

Programs

Formula

T(n,k) = A010766(2n^2,k).