cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A278116 a(n) is the largest j such that A278115(n,k) strictly decreases for k=1..j.

Original entry on oeis.org

1, 2, 3, 3, 4, 3, 2, 2, 5, 4, 4, 2, 2, 3, 3, 5, 3, 2, 2, 4, 3, 3, 2, 2, 3, 4, 6, 6, 2, 3, 4, 3, 3, 2, 2, 3, 5, 4, 4, 2, 4, 3, 4, 3, 2, 2, 3, 4, 3, 2, 2, 4, 3, 4, 3, 2, 2, 3, 4, 3, 2, 2, 3, 3, 5, 3, 2, 2, 4, 5, 4, 2, 2, 3, 3, 4, 3, 2, 3, 4, 7, 5, 2, 2, 3, 4, 2, 2, 2, 3, 5, 5, 5, 2, 2, 3, 4, 3, 2, 2, 4, 5, 3, 3, 2
Offset: 1

Views

Author

Jason Kimberley, Feb 12 2017

Keywords

Crossrefs

Cf. A278102.
This is the row length sequence for triangles A278117 and A278118.
A278119 lists first occurrences in this sequence.

Programs

  • Magma
    A:=func;
    A278116:=funcA278115(n,P[j+1])}
      select j else #P) where P is PrimesUpTo(2*n^2)>;
    [A278116(n):n in[1..103]];
    
  • Mathematica
    Map[1 + Length@ TakeWhile[Differences@ #, # < 0 &] &, #] &@ Table[# Floor[n Sqrt[2/#]]^2 &@ Prime@ k, {n, 105}, {k, PrimePi[2 n^2]}] (* Michael De Vlieger, Feb 17 2017 *)
  • Python
    def isqrt(n):
        if n < 0:
            raise ValueError('imaginary')
        if n == 0:
            return 0
        a, b = divmod(n.bit_length(),2)
        x = 2**(a+b)
        while True:
            y = (x + n//x)//2
            if y >= x:
                return x
            x = y;
    def next_prime(n):
        for p in range(n+1,2*n+1):
            for i in range(2,isqrt(n)+1):
                if p % i == 0:
                    break
            else:
                return p
        return None
    def A278116(n):
        k = 0
        p = 2
        s2= (n**2)*p
        s = s2
        while True:
            s_= s
            k+= 1
            p = next_prime(p)
            s = (isqrt(s2//p)**2)*p
            if s > s_:
                break
        return k
Showing 1-1 of 1 results.