cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A073233 Decimal expansion of Pi^Pi.

Original entry on oeis.org

3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

Examples

			36.4621596072079117709908260226...
		

Crossrefs

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).
Cf. A073226 (e^e).
Cf. A049006 (i^i), A116186 (real part of i^i^i).
Cf. A194555 (real part of i^e^Pi).

Programs

  • Mathematica
    RealDigits[N[Pi^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    Pi^Pi
    
  • PARI
    { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009

A030437 Decimal expansion of x such that x^x = Pi.

Original entry on oeis.org

1, 8, 5, 4, 1, 0, 5, 9, 6, 7, 9, 2, 1, 0, 2, 6, 4, 3, 2, 7, 4, 8, 3, 7, 0, 7, 1, 8, 4, 1, 0, 2, 9, 3, 2, 4, 5, 4, 2, 9, 2, 3, 2, 6, 7, 5, 0, 2, 7, 2, 6, 1, 9, 3, 0, 8, 4, 6, 9, 7, 5, 1, 0, 8, 4, 6, 8, 8, 0, 6, 2, 1, 2, 4, 8, 7, 3, 2, 6, 1, 6, 6, 5, 5, 9, 2, 4, 0, 3, 3, 6, 6, 1, 7, 0, 6, 8, 2, 4, 3, 8, 8, 0
Offset: 1

Views

Author

James L. Dean (csvcjld(AT)nomvs.lsumc.edu)

Keywords

Examples

			x = 1.8541059679210264327483707184102932454292... .
		

Crossrefs

Cf. A000796 (Pi), A100947 (continued fraction), A073243 (reciprocal).

Programs

  • Maple
    x^x=Pi; solve(%,x); evalf(%, 140); # solution is log(Pi)/LambertW(log(Pi)), where LambertW is the Omega function.
  • Mathematica
    x=Pi; RealDigits[Log[x]/ProductLog[Log[x]],10,6! ][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2010 *)
    RealDigits[x/.FindRoot[x^x==Pi,{x,1},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Nov 29 2024 *)
  • PARI
    solve(x=1, 2, x^x-Pi) \\ Michel Marcus, Jan 14 2015
    
  • PARI
    exp(lambertw(log(Pi))) \\ Charles R Greathouse IV, Nov 11 2017

Extensions

More terms from Simon Plouffe
Better name from Jon E. Schoenfield, Dec 30 2014

A073240 Decimal expansion of (1/Pi)^(1/Pi).

Original entry on oeis.org

6, 9, 4, 6, 2, 7, 9, 9, 2, 2, 4, 6, 8, 2, 6, 1, 5, 3, 1, 2, 4, 3, 8, 3, 7, 6, 1, 4, 1, 0, 8, 3, 8, 6, 1, 0, 0, 6, 1, 7, 2, 6, 9, 1, 8, 9, 1, 0, 9, 7, 2, 4, 6, 0, 1, 9, 8, 1, 9, 5, 6, 4, 9, 1, 4, 9, 8, 3, 3, 4, 5, 8, 7, 6, 6, 5, 1, 0, 8, 9, 9, 1, 3, 1, 0, 0, 9, 9, 2, 6, 8, 8, 1, 7, 2, 3, 9, 1, 8, 5, 5, 0, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Jul 27 2002

Keywords

Comments

(1/Pi)^(1/Pi) = Pi^(-1/Pi) = 1/(Pi^(1/Pi)) (reciprocal of A073238).

Examples

			0.69462799224682615312438376141...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073241 ((1/Pi)^(1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073233 (Pi^Pi).

Programs

  • Mathematica
    First[RealDigits[(1/Pi)^(1/Pi),10,100]] (* Paolo Xausa, Nov 07 2023 *)
  • PARI
    (1/Pi)^(1/Pi)

A073241 Decimal expansion of (1/Pi)^(1/Pi)^(1/Pi).

Original entry on oeis.org

4, 5, 1, 5, 0, 8, 3, 4, 5, 5, 3, 6, 5, 7, 2, 8, 0, 5, 2, 2, 1, 9, 9, 3, 8, 1, 8, 0, 4, 4, 7, 3, 4, 0, 3, 6, 5, 4, 0, 9, 0, 2, 8, 0, 2, 6, 4, 5, 9, 7, 9, 7, 0, 5, 1, 8, 5, 4, 4, 2, 7, 3, 0, 0, 4, 1, 2, 5, 2, 6, 6, 9, 2, 7, 8, 9, 4, 8, 3, 4, 8, 2, 7, 7, 2, 5, 5, 0, 6, 0, 0, 3, 5, 5, 8, 4, 3, 1, 0, 8, 9, 3, 0, 8
Offset: 0

Views

Author

Rick L. Shepherd, Jul 27 2002

Keywords

Examples

			0.45150834553657280522199381804...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073242 (((1/Pi)^(1/Pi))^(1/Pi)), A073234 (Pi^Pi^Pi).

Programs

  • Mathematica
    With[{c=1/Pi},RealDigits[c^c^c,10,120][[1]]] (* Harvey P. Dale, Mar 10 2015 *)
  • PARI
    (1/Pi)^(1/Pi)^(1/Pi)

A293009 Decimal expansion of the first derivative of the infinite power tower function x^x^x... at x = 1/Pi.

Original entry on oeis.org

5, 6, 5, 0, 1, 8, 4, 4, 5, 9, 6, 0, 2, 4, 1, 5, 0, 5, 2, 8, 9, 9, 4, 0, 9, 6, 0, 6, 2, 2, 4, 5, 1, 9, 2, 0, 2, 8, 3, 9, 2, 6, 8, 0, 0, 7, 8, 5, 1, 1, 8, 3, 8, 2, 8, 5, 5, 1, 9, 0, 7, 7, 6, 5, 3, 9, 8, 9, 6, 0, 7, 0, 6, 4, 1, 1, 3, 2, 5, 1, 5, 5, 4, 4, 0, 8, 2, 3, 0, 4, 7, 7, 2, 1, 7, 8, 3, 8, 8, 6, 8, 1, 4, 7, 3, 6
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2018

Keywords

Examples

			0.56501844596024150528994096062245192028392680078511838285519...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi*Exp[-2*LambertW[Log[Pi]]]/(1+LambertW[Log[Pi]]), 10, 100][[1]] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    Pi*exp(-2*lambertw(log(Pi)))/(1+lambertw(log(Pi))) \\ Michel Marcus, Mar 16 2018

Formula

Equals Pi*exp(-2*LambertW(log(Pi)))/(1+LambertW(log(Pi))).

A100120 Limit of the power tower t(2)^(t(3)^(t(5)^(t(7)^(...)))) with t(n)=n!^(1/n!) and n taking prime values.

Original entry on oeis.org

1, 6, 0, 4, 6, 5, 1, 2, 1, 8, 4, 1, 0, 0, 5, 5, 8, 2, 7, 9, 8, 3, 8, 6, 6, 5, 1, 1, 0, 1, 5, 1, 7, 3, 3, 9, 8, 8, 0, 8, 6, 4, 9, 7, 5, 4, 6, 9, 9, 5, 8, 0, 3, 4, 0, 4, 8, 4, 5, 7, 2, 7, 2, 8, 3, 2, 7, 1, 1, 4, 9, 2, 5, 5, 9, 9, 5, 4, 0, 0, 5, 3, 7, 9, 9, 1, 7, 5, 6, 0, 1, 9, 9, 0, 6, 5, 5, 9, 8, 2
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 09 2004

Keywords

Comments

Let f(n)=n!^(1/n!). Then this number is f(2)^(f(3)^(f(5)^(...)))

Examples

			1.604651218410055827983866511015173398808649754699580...
		

Crossrefs

Programs

  • PARI
    default(realprecision,100):t=1:forstep(n=100,1,-1,t=(prime(n)!^(1/prime(n)!))^t):return(t)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A194346 Decimal expansion of h_o(1/17), where h_o(x) is the odd infinite power tower function.

Original entry on oeis.org

2, 0, 4, 2, 7, 4, 7, 3, 6, 6, 6, 5, 5, 1, 8, 4, 9, 9, 1, 7, 5, 6, 9, 8, 7, 4, 5, 1, 8, 6, 4, 4, 6, 9, 5, 7, 9, 9, 1, 6, 6, 8, 6, 9, 0, 3, 4, 8, 4, 2, 2, 5, 7, 2, 7, 3, 6, 5, 9, 2, 4, 6, 6, 7, 5, 9, 3, 2, 4, 9, 6, 6, 1, 3, 3, 3, 3, 6, 6, 8, 4, 1, 4, 3, 5, 8, 7, 7, 1, 6, 3, 7, 2, 0, 1, 9, 7, 4, 6, 3
Offset: 0

Views

Author

Jonathan Sondow, Aug 27 2011

Keywords

Comments

The odd infinite power tower function is h_o(x) = lim f(n,x) as n --> infinity, where f(n+1,x) = x^x^(f(n,x)) and f(1,x) = x. The even infinite power tower function h_e(x) is the same limit except with f(1,x) = x^x (see A194347). The limits exist if and only if 0 < x <= e^(1/e). If (1/e)^e <= x <= e^(1/e), then h_o(x) = h_e(x) = h(x) (the infinite power tower function-see the comments in A073230) and y = h(x) is a solution of x^y = y. If 0 < x < (1/e)^e, then h_o(x) < h_e(x), and two solutions of x^x^y = y are y = h_o(x) and y = h_e(x). For example, y = h_o(1/16) = 1/4 and y = h_e(1/16) = 1/2 are solutions of (1/16)^(1/16)^y = y.
h_o(1/17) and h_e(1/17) are irrational, and at least one of them is transcendental (see Sondow and Marques 2010).

Examples

			0.204274736665518499175698745186446957991668690348422572736592466759324966133336...
		

References

  • See the References in Sondow and Marques 2010.

Crossrefs

Programs

  • Mathematica
    a = N[1/17, 100]; Do[a = (1/17)^(1/17)^a, {3000}]; RealDigits[a, 10, 100] // First
    RealDigits[ Fold[ N[#2^#1, 128] &, 1/17, Table[1/17, {5710}]], 10, 105][[1]] (* Robert G. Wilson v, Mar 20 2012 *)
  • PARI
    solve(x=0,1,17^(-17^-x)-x) \\ Charles R Greathouse IV, Mar 20 2012

A194347 Decimal expansion of h_e(1/17), where h_e(x) is the even infinite power tower function.

Original entry on oeis.org

5, 6, 0, 5, 9, 6, 4, 8, 5, 3, 1, 6, 4, 9, 8, 2, 1, 1, 1, 7, 6, 1, 0, 8, 5, 7, 0, 3, 7, 8, 4, 7, 0, 7, 7, 2, 3, 0, 1, 0, 9, 9, 8, 3, 1, 5, 2, 3, 1, 2, 2, 8, 4, 0, 7, 4, 4, 4, 4, 2, 4, 4, 7, 2, 0, 2, 3, 1, 9, 2, 2, 7, 5, 7, 2, 2, 9, 1, 6, 8, 6, 3, 5, 7, 4, 0, 0, 5, 0, 0, 2, 8, 2, 1, 7, 4, 8, 7, 5, 8
Offset: 0

Views

Author

Jonathan Sondow, Aug 27 2011

Keywords

Comments

See the Comments, References and Links in A194346.

Examples

			0.560596485316498211176108570378470772301099831523122840744442447202319227572291...
		

Crossrefs

Programs

  • Mathematica
    a = N[(1/17)^(1/17), 100]; Do[a = (1/17)^(1/17)^a, {3000}]; RealDigits[a, 10, 100] // First

A266092 Decimal expansion of the power tower of 1/sqrt(3): the real solution to 3^(x/2)*x = 1.

Original entry on oeis.org

6, 8, 6, 0, 2, 6, 7, 2, 4, 5, 3, 6, 2, 5, 1, 3, 1, 9, 7, 1, 3, 0, 0, 6, 8, 4, 6, 1, 8, 2, 2, 3, 8, 1, 5, 9, 5, 0, 3, 3, 2, 4, 2, 3, 7, 7, 6, 2, 3, 4, 3, 4, 0, 2, 4, 1, 7, 6, 7, 1, 9, 1, 6, 7, 0, 0, 4, 0, 2, 9, 0, 5, 8, 1, 8, 7, 5, 4, 8, 4, 8, 7, 7, 6, 4, 2, 8, 1, 5, 7, 8, 6, 8, 9, 3, 9, 8, 2, 6, 3, 8, 0, 6, 6, 8, 6, 9, 9, 3, 5, 2, 8, 3, 3, 2, 4, 8, 9, 6, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Examples

			(1/sqrt(3))^(1/sqrt(3))^(1/sqrt(3))^(1/sqrt(3))^… = 0.686026724536251319713006846182…
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2 ProductLog[Log[3]/2])/Log[3], 10, 120][[1]]
  • PARI
    t=log(3)/2; lambertw(t)/t \\ Charles R Greathouse IV, Apr 18 2016

Formula

Equals 2*LambertW(log(3)/2)/log(3).

A276635 Decimal expansion of the power tower of 1/(2*Pi): the real solution to (2*Pi)^x*x = 1.

Original entry on oeis.org

4, 4, 3, 0, 0, 1, 4, 5, 7, 4, 3, 8, 8, 3, 8, 0, 5, 6, 6, 7, 4, 4, 1, 9, 2, 6, 9, 9, 9, 2, 7, 1, 9, 0, 4, 6, 6, 9, 7, 5, 0, 2, 2, 6, 0, 5, 5, 5, 1, 9, 6, 4, 6, 2, 7, 9, 2, 0, 1, 2, 0, 9, 6, 6, 8, 6, 0, 6, 0, 3, 1, 3, 1, 0, 6, 4, 0, 4, 9, 1, 9, 9, 9, 9, 0, 0, 0, 4, 8, 4, 1, 0, 0, 6, 6, 8, 9, 8, 6, 8, 8, 2, 0, 7, 9, 5, 9, 0, 8, 1, 3, 6, 1, 6, 9, 4, 1, 7, 0, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 08 2016

Keywords

Examples

			(1/(2*Pi))^(1/(2*Pi))^(1/(2*Pi))^... = 0.443001457438838056674419269992719...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ProductLog[Log[2 Pi]]/Log[2 Pi], 10, 120][[1]]

Formula

Equals LambertW(log(2*Pi))/log(2*Pi).
Equals exp(-LambertW(A061444)).
Showing 1-10 of 10 results.