cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A159824 Continued fraction for Pi^Pi (cf. A073233).

Original entry on oeis.org

36, 2, 6, 9, 2, 1, 2, 5, 1, 1, 6, 2, 1, 291, 1, 38, 50, 1, 2, 5, 4, 1, 2, 2, 1, 5, 1, 4, 13, 2, 1, 4, 3, 3, 1, 2, 25, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 1, 43, 1, 2, 7, 3, 1, 1, 1, 2, 4, 2, 1, 1, 3, 1, 3, 3, 2, 2, 16, 3, 5, 2, 1, 5, 2, 1, 10, 1, 1, 3, 1, 13, 1, 1, 3, 1, 10, 4, 1, 1, 1, 38, 1, 2, 2, 1, 1, 3
Offset: 0

Views

Author

Harry J. Smith, Apr 30 2009

Keywords

Examples

			36.4621596072079117709908260... = 36 + 1/(2 + 1/(6 + 1/(9 + 1/(2 + ...)))).
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Pi^Pi,200] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2010 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^Pi); for (n=1, 20001, write("b159824.txt", n-1, " ", x[n])); }

Extensions

Edited by N. J. A. Sloane, Jul 22 2010

A073226 Decimal expansion of e^e.

Original entry on oeis.org

1, 5, 1, 5, 4, 2, 6, 2, 2, 4, 1, 4, 7, 9, 2, 6, 4, 1, 8, 9, 7, 6, 0, 4, 3, 0, 2, 7, 2, 6, 2, 9, 9, 1, 1, 9, 0, 5, 5, 2, 8, 5, 4, 8, 5, 3, 6, 8, 5, 6, 1, 3, 9, 7, 6, 9, 1, 4, 0, 7, 4, 6, 4, 0, 5, 9, 1, 4, 8, 3, 0, 9, 7, 3, 7, 3, 0, 9, 3, 4, 4, 3, 2, 6, 0, 8, 4, 5, 6, 9, 6, 8, 3, 5, 7, 8, 7, 3, 4, 6, 0, 5, 1, 1, 5
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

Given z > 0, there exist positive real numbers x < y, with x^y = y^x = z, if and only if z > e^e. In that case, 1 < x < e < y and (x, y) = ((1 + 1/t)^t, (1 + 1/t)^(t+1)) for some t > 0. (For example, t = 1 gives 2^4 = 4^2 = 16 > e^e.) Proofs of these classical results and applications of them are in Marques and Sondow (2010).
e^e = lim_{n->infinity} ((n+1)/n)^((n+1)^(n+1)/n^n), n > 0 an integer; cf. [Vernescu] wherein it is also stated that the assertions of the previous comment above were proved by Alexandru Lupas in 2006. - L. Edson Jeffery, Sep 18 2012
A weak form of Schanuel's Conjecture implies that e^e is transcendental--see Marques and Sondow (2012).

Examples

			15.15426224147926418976043027262991190552854853685613976914...
		

Crossrefs

Cf. A073233 (Pi^Pi), A049006 (i^i), A001113 (e), A073227 (e^e^e), A004002 (Benford numbers), A056072 (floor(e^e^...^e), n e's), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073229 (e^(1/e)), A073230 ((1/e)^e).

Programs

  • Magma
    Exp(Exp(1)); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[ E^E, 10, 110] [[1]]
  • PARI
    exp(exp(1))
    
  • PARI
    { default(realprecision, 20080); x=exp(1)^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073226.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} e^n/n!. - Richard R. Forberg, Dec 29 2013
Equals Product_{n>=0} e^(1/n!). - Amiram Eldar, Jun 29 2020

A073244 Decimal expansion of Pi - e.

Original entry on oeis.org

4, 2, 3, 3, 1, 0, 8, 2, 5, 1, 3, 0, 7, 4, 8, 0, 0, 3, 1, 0, 2, 3, 5, 5, 9, 1, 1, 9, 2, 6, 8, 4, 0, 3, 8, 6, 4, 3, 9, 9, 2, 2, 3, 0, 5, 6, 7, 5, 1, 4, 6, 2, 4, 6, 0, 0, 7, 9, 7, 6, 9, 6, 4, 5, 8, 3, 7, 3, 9, 7, 7, 5, 9, 3, 2, 6, 6, 1, 4, 0, 4, 0, 5, 6, 6, 5, 2, 6, 4, 6, 8, 1, 6, 9, 5, 0, 6, 4, 0, 5, 5, 4, 6, 8
Offset: 0

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Examples

			0.42331082513074800310235591192...
		

Crossrefs

Cf. A059742 (Pi+e), A000796 (Pi), A001113 (e), A019609 (Pi*e), A061382 (Pi/e), A061360 (e/Pi), A039661 (e^Pi), A059850 (Pi^e), A073233 (Pi^Pi), A073226 (e^e), A049006 (i^i = e^(-Pi/2)).
Cf. A110564 for continued fraction for Pi - e.

Programs

A202955 Decimal expansion of Pi^Pi^Pi^Pi.

Original entry on oeis.org

9, 0, 8, 0, 2, 2, 2, 4, 5, 5, 3, 9, 0, 6, 1, 7, 7, 6, 9, 7, 2, 3, 9, 3, 1, 7, 1, 3, 2, 8, 4, 2, 8, 7, 7, 4, 6, 5, 1, 6, 0, 4, 6, 3, 5, 8, 1, 3, 1, 8, 9, 7, 3, 5, 9, 9, 4, 6, 9, 3, 5, 9, 2, 6, 3, 3, 6, 8, 4, 5, 1, 9, 9, 0, 5, 8, 1, 5, 3, 6, 0, 9, 5, 6, 8, 6, 6, 7, 6, 7, 2, 6, 0, 1, 7, 6, 8, 6, 3, 1, 3, 6, 9, 4, 2, 0, 9, 8, 3, 7, 4, 4, 2, 6, 5, 5
Offset: 666262452970848504

Views

Author

M. F. Hasler, Dec 26 2011

Keywords

Comments

The offset equals the floor(Pi^Pi^Pi*Log_10(Pi))+1. - Robert G. Wilson v, Mar 13 2014
Whether this number is an integer or not is an open question. It is also an open question whether Pi^Pi^Pi^...^Pi^Pi n times is an integer for any natural n > 4. - Eliora Ben-Gurion, Nov 17 2019

Examples

			9.080222455390617769723931713284287746516046358131897359946935926336845199... *10^666262452970848503
		

Crossrefs

Cf. A073236, A085667, A000796 (Pi), A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073235 ((Pi^Pi)^Pi), A202953 ((Pi^Pi)^(Pi^Pi)).

Programs

  • Mathematica
    nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[exp*Log10[base], nbrdgt + Floor[Log10[exp]] + 2]], 10, nbrdgt][[1]]; f[Pi, Pi^Pi^Pi] (* Robert G. Wilson v, Mar 13 2014 *)
  • PARI
    LP(a,b)=[10^frac(a=log(a)/log(10)*b),a\1] /* returns [m,e] such that a^b = m*10^e */
    LP(Pi,Pi^Pi^Pi)

Formula

A073234 Decimal expansion of Pi^(Pi^Pi).

Original entry on oeis.org

1, 3, 4, 0, 1, 6, 4, 1, 8, 3, 0, 0, 6, 3, 5, 7, 4, 3, 5, 2, 9, 7, 4, 4, 9, 1, 2, 9, 6, 4, 0, 1, 3, 1, 4, 1, 5, 0, 9, 9, 3, 7, 4, 9, 7, 4, 5, 7, 3, 4, 9, 9, 2, 3, 7, 7, 8, 7, 9, 2, 7, 5, 1, 6, 5, 8, 6, 0, 3, 4, 0, 9, 2, 6, 1, 9, 0, 9, 4, 0, 6, 8, 1, 4, 8, 2, 6, 9, 4, 7, 2, 6, 1, 1, 3, 0, 1, 1, 4, 2, 2, 7, 3, 4, 3
Offset: 19

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Examples

			1340164183006357435.29744912964...
		

References

  • Christopher Creutzig & Walter Oevel, MuPAD Tutorial. Berlin: Springer-Verlag (2004): 339.

Crossrefs

Cf. A000796 (Pi), A073233 (Pi^Pi), A202955 (Pi^Pi^Pi^Pi), A073236 (Pi^Pi^...^Pi, n times, rounded), A073235 ((Pi^Pi)^Pi), A073241 ((1/Pi)^(1/Pi)^(1/Pi)).

Programs

  • Mathematica
    RealDigits[Pi^Pi^Pi, 10, 100][[1]] (* Alonso del Arte, Jul 03 2012 *)
  • MuPAD
    DIGITS := 100:
    float(PI^(PI^PI)) // from Creutzig & Oevel (2004)
  • PARI
    Pi^Pi^Pi
    
  • PARI
    { default(realprecision, 20100); x=Pi^Pi^Pi/10^18; for (n=19, 20000, d=floor(x); x=(x-d)*10; write("b073234.txt", n, " ", d)); } \\ Harry J. Smith, May 01 2009, corrected May 19 2009, had -n
    

A073238 Decimal expansion of Pi^(1/Pi).

Original entry on oeis.org

1, 4, 3, 9, 6, 1, 9, 4, 9, 5, 8, 4, 7, 5, 9, 0, 6, 8, 8, 3, 3, 6, 4, 9, 0, 8, 0, 4, 9, 7, 3, 7, 5, 5, 6, 7, 8, 6, 9, 8, 2, 9, 6, 4, 7, 4, 4, 5, 6, 6, 4, 0, 9, 8, 2, 2, 3, 3, 1, 6, 0, 6, 4, 1, 8, 9, 0, 2, 4, 3, 4, 3, 9, 4, 8, 9, 1, 7, 5, 8, 4, 7, 8, 1, 9, 7, 7, 5, 0, 4, 6, 5, 9, 8, 4, 1, 3, 0, 4, 2, 0, 3, 4, 4, 2
Offset: 1

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

Pi^(1/Pi) = 1/((1/Pi)^(1/Pi)) (reciprocal of A073240).

Examples

			1.43961949584759068833649080497...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073233 (Pi^Pi).

Programs

A073240 Decimal expansion of (1/Pi)^(1/Pi).

Original entry on oeis.org

6, 9, 4, 6, 2, 7, 9, 9, 2, 2, 4, 6, 8, 2, 6, 1, 5, 3, 1, 2, 4, 3, 8, 3, 7, 6, 1, 4, 1, 0, 8, 3, 8, 6, 1, 0, 0, 6, 1, 7, 2, 6, 9, 1, 8, 9, 1, 0, 9, 7, 2, 4, 6, 0, 1, 9, 8, 1, 9, 5, 6, 4, 9, 1, 4, 9, 8, 3, 3, 4, 5, 8, 7, 6, 6, 5, 1, 0, 8, 9, 9, 1, 3, 1, 0, 0, 9, 9, 2, 6, 8, 8, 1, 7, 2, 3, 9, 1, 8, 5, 5, 0, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Jul 27 2002

Keywords

Comments

(1/Pi)^(1/Pi) = Pi^(-1/Pi) = 1/(Pi^(1/Pi)) (reciprocal of A073238).

Examples

			0.69462799224682615312438376141...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073241 ((1/Pi)^(1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073233 (Pi^Pi).

Programs

  • Mathematica
    First[RealDigits[(1/Pi)^(1/Pi),10,100]] (* Paolo Xausa, Nov 07 2023 *)
  • PARI
    (1/Pi)^(1/Pi)

A073236 Pi^Pi^...^Pi (n times) rounded to nearest integer.

Original entry on oeis.org

1, 3, 36, 1340164183006357435
Offset: 0

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

Decimal expansions (before rounding) of Pi (A000796), Pi^Pi (A073233) and Pi^Pi^Pi (A073234) correspond to a(1), a(2) and a(3), respectively. All four terms are equivalent if floor is used instead of round. See A073237 for same sequence but using ceiling. This sequence is the analog of A004002, which deals with e.
a(4) has 666262452970848504 digits. - Mateusz Winiarski, Mar 23 2020; corrected by Martin Renner, Aug 23 2023

Crossrefs

Cf. A000796 (Pi), A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073237 (Ceiling of Pi^Pi^...^Pi, n times), A004002 (Benford numbers).

Programs

  • Maple
    p:= n-> `if`(n=0, 1, Pi^p(n-1)):
    a:= n-> round(p(n)):
    seq(a(n), n=0..3);  # Alois P. Heinz, Jul 20 2024
  • Mathematica
    Round[NestList[Power[Pi, #] &, 1, 3]] (* Alonso del Arte, Jul 02 2014 *)
  • PARI
    p=0; for(n=0,3, p=Pi^p; print1(round(p),",")) \\ n = 4 produces too large an exponent for PARI.

Formula

a(n) = round(Pi^Pi^...^Pi), where Pi occurs n times, a(0) = 1 (=Pi^0).

A231736 Decimal expansion of the natural logarithm of Pi^Pi.

Original entry on oeis.org

3, 5, 9, 6, 2, 7, 4, 9, 9, 9, 7, 2, 9, 1, 5, 8, 1, 9, 8, 0, 8, 6, 0, 0, 1, 7, 5, 1, 6, 4, 6, 3, 6, 0, 3, 8, 1, 3, 6, 9, 1, 7, 9, 2, 8, 9, 7, 5, 3, 8, 7, 7, 2, 3, 0, 4, 9, 7, 2, 4, 4, 1, 2, 0, 8, 2, 0, 9, 5, 9, 5, 5, 6, 5, 4, 3, 7, 1, 6, 8, 2, 8, 3, 9, 7, 4, 6, 8, 9, 9, 6, 2, 4, 0, 7, 2, 5, 2, 2, 5, 2, 1, 6, 0, 6
Offset: 1

Views

Author

Stanislav Sykora, Nov 13 2013

Keywords

Examples

			3.59627499972915819808600175164636038136917928975387723049724412082...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi * Log[Pi], 10, 120][[1]] (* Amiram Eldar, May 17 2023 *)
  • PARI
    Pi*log(Pi)

Formula

Equals Pi*log(Pi).

A073235 Decimal expansion of (Pi^Pi)^Pi.

Original entry on oeis.org

8, 0, 6, 6, 2, 6, 6, 5, 9, 3, 8, 5, 5, 4, 5, 9, 6, 7, 3, 8, 4, 9, 8, 3, 6, 0, 1, 8, 9, 7, 7, 4, 6, 6, 8, 0, 7, 1, 9, 3, 6, 0, 0, 6, 8, 0, 5, 2, 5, 1, 4, 9, 6, 0, 5, 9, 9, 5, 0, 4, 7, 7, 0, 8, 9, 3, 0, 1, 4, 5, 9, 0, 1, 3, 1, 1, 5, 4, 9, 8, 4, 4, 3, 6, 1, 6, 3, 0, 1, 5, 8, 4, 0, 3, 9, 0, 0, 8, 2, 6, 1, 3, 2, 6, 9
Offset: 5

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Examples

			80662.6659385545967384983601897...
		

Crossrefs

Cf. A000796 (Pi), A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073241 ((1/Pi)^(1/Pi)^(1/Pi)), A073242 (((1/Pi)^(1/Pi))^(1/Pi)).

Programs

  • Mathematica
    RealDigits[(Pi^Pi)^Pi, 10, 105][[1]] (* Alonso del Arte, Jul 03 2012 *)
  • PARI
    (Pi^Pi)^Pi
Showing 1-10 of 24 results. Next