cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A064107 Continued fraction quotients for e^e = 15.15426224... (A073226).

Original entry on oeis.org

15, 6, 2, 13, 1, 3, 6, 2, 1, 1, 5, 1, 1, 1, 9, 4, 1, 1, 1, 6, 7, 1, 2, 4, 1, 2, 2, 24, 1, 2, 4, 56, 1, 1, 2, 4, 1, 75, 1, 5, 1, 2, 2, 1, 137, 2, 2, 97, 3, 16, 1, 1, 1, 1, 3, 5, 12, 1, 1, 2, 1, 53, 1, 2, 5, 3, 2, 4, 1, 2, 1, 39, 1, 2, 1, 4, 1, 11, 1, 5, 5, 1, 4, 1, 17, 12, 4, 82, 1, 4, 6, 25, 3, 2, 3
Offset: 0

Views

Author

Labos Elemer, Sep 17 2001

Keywords

Comments

It was conjectured (but remains unproved) that this sequence is infinite and aperiodic, but it is difficult to determine who first posed this problem. - Vladimir Reshetnikov, Apr 27 2013

Examples

			15.154262241479264189760430... = 15 + 1/(6 + 1/(2 + 1/(13 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 30 2009
		

Crossrefs

Cf. A058287, A058288, A073226 (decimal expansion), A159825.

Programs

  • Maple
    with(numtheory): cfrac(evalf((exp(1))^(exp(1)),2560),256,'quotients');
  • Mathematica
    ContinuedFraction[E^E,100] (* Harvey P. Dale, Sep 29 2012 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(exp(1))); for (n=1, 20000, write("b064107.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 30 2009

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A073229 Decimal expansion of e^(1/e).

Original entry on oeis.org

1, 4, 4, 4, 6, 6, 7, 8, 6, 1, 0, 0, 9, 7, 6, 6, 1, 3, 3, 6, 5, 8, 3, 3, 9, 1, 0, 8, 5, 9, 6, 4, 3, 0, 2, 2, 3, 0, 5, 8, 5, 9, 5, 4, 5, 3, 2, 4, 2, 2, 5, 3, 1, 6, 5, 8, 2, 0, 5, 2, 2, 6, 6, 4, 3, 0, 3, 8, 5, 4, 9, 3, 7, 7, 1, 8, 6, 1, 4, 5, 0, 5, 5, 7, 3, 5, 8, 2, 9, 2, 3, 0, 4, 7, 0, 9, 8, 8, 5, 1, 1, 4, 2, 9, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

e^(1/e) = 1/((1/e)^(1/e)) (reciprocal of A072364).
Let w(n+1)=A^w(n); then w(n) converges if and only if (1/e)^e <= A <= e^(1/e) (see the comments in A073230) for initial value w(1)=A. If A=e^(1/e) then lim_{n->infinity} w(n) = e. - Benoit Cloitre, Aug 06 2002; corrected by Robert FERREOL, Jun 12 2015
x^(1/x) is maximum for x = e and the maximum value is e^(1/e). This gives an interesting and direct proof that 2 < e < 4 as 2^(1/2) < e^(1/e) > 4^(1/4) while 2^(1/2) = 4^(1/4). - Amarnath Murthy, Nov 26 2002
For large n, A234604(n)/A234604(n-1) converges to e^(1/e). - Richard R. Forberg, Dec 28 2013
Value of the unique base b > 0 for which the exponential curve y=b^x and its inverse y=log_b(x) kiss each other; the kissing point is (e,e). - Stanislav Sykora, May 25 2015
Actually, there is another base with such property, b=(1/e)^e with kiss point (1/e,1/e). - Yuval Paz, Dec 29 2018
The problem of finding the maximum of f(x) = x^(1/x) was posed and solved by the Swiss mathematician Jakob Steiner (1796-1863) in 1850. - Amiram Eldar, Jun 17 2021

Examples

			1.44466786100976613365833910859...
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 35.

Crossrefs

Cf. A001113 (e), A068985 (1/e), A073230 ((1/e)^e), A072364 ((1/e)^(1/e)), A073226 (e^e).

Programs

  • Maple
    evalf[110](exp(exp(-1))); # Muniru A Asiru, Dec 29 2018
  • Mathematica
    RealDigits[ E^(1/E), 10, 110] [[1]]
  • PARI
    exp(1)^exp(-1)

Formula

Equals 1 + Integral_{x = 1/e..1} (1 + log(x))/x^x dx = 1 - Integral_{x = 0..1/e} (1 + log(x))/x^x dx. - Peter Bala, Oct 30 2019
Equals Sum_{k>=0} exp(-k)/k!. - Amiram Eldar, Aug 13 2020
Equals lim_{x->oo} (Sum_{n>=1} (x/n)^n)^(1/x) (Furdui, 2017). - Amiram Eldar, Mar 26 2022

A073233 Decimal expansion of Pi^Pi.

Original entry on oeis.org

3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

Examples

			36.4621596072079117709908260226...
		

Crossrefs

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).
Cf. A073226 (e^e).
Cf. A049006 (i^i), A116186 (real part of i^i^i).
Cf. A194555 (real part of i^e^Pi).

Programs

  • Mathematica
    RealDigits[N[Pi^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    Pi^Pi
    
  • PARI
    { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009

A073230 Decimal expansion of (1/e)^e.

Original entry on oeis.org

0, 6, 5, 9, 8, 8, 0, 3, 5, 8, 4, 5, 3, 1, 2, 5, 3, 7, 0, 7, 6, 7, 9, 0, 1, 8, 7, 5, 9, 6, 8, 4, 6, 4, 2, 4, 9, 3, 8, 5, 7, 7, 0, 4, 8, 2, 5, 2, 7, 9, 6, 4, 3, 6, 4, 0, 2, 4, 7, 3, 5, 4, 1, 5, 6, 6, 7, 3, 6, 3, 3, 0, 0, 3, 0, 7, 5, 6, 3, 0, 8, 1, 0, 4, 0, 8, 8, 2, 4, 2, 4, 5, 3, 3, 7, 1, 4, 6, 7, 7, 4, 5, 6, 7
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

(1/e)^e = e^(-e) = 1/(e^e) (reciprocal of A073226).
The power tower function f(x)=x^(x^(x^...)) is defined on the closed interval [e^(-e),e^(1/e)]. - Lekraj Beedassy, Mar 17 2005

Examples

			0.06598803584531253707679018759...
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, Solution to problem 8A (Power Tower) p. 240.

Crossrefs

Cf. A001113 (e), A068985 (1/e), A073229 (e^(1/e)), A072364 ((1/e)^(1/e)), A073226 (e^e).

Programs

A085667 Decimal expansion of e^e^e^e.

Original entry on oeis.org

2, 3, 3, 1, 5, 0, 4, 3, 9, 9, 0, 0, 7, 1, 9, 5, 4, 6, 2, 2, 8, 9, 6, 8, 9, 9, 1, 1, 0, 1, 2, 1, 3, 7, 6, 6, 6, 3, 3, 2, 0, 1, 7, 4, 2, 8, 9, 6, 3, 5, 1, 6, 8, 2, 3, 2, 8, 0, 0, 5, 4, 5, 4, 6, 8, 1, 8, 0, 7, 9, 4, 3, 6, 6, 4, 2, 4, 9, 7, 3, 1, 4, 8, 5, 7, 3, 0, 6, 6, 6, 1, 3, 2, 1, 4, 0, 7, 6, 7
Offset: 1656521

Views

Author

N. J. A. Sloane, Jul 15 2003

Keywords

Examples

			2.331504399007195462289689911012137666332017428963... * 10^1656520
		

Crossrefs

Programs

A073227 Decimal expansion of e^e^e.

Original entry on oeis.org

3, 8, 1, 4, 2, 7, 9, 1, 0, 4, 7, 6, 0, 2, 2, 0, 5, 9, 2, 2, 0, 9, 2, 1, 9, 5, 9, 4, 0, 9, 8, 2, 0, 3, 5, 7, 1, 0, 2, 3, 9, 4, 0, 5, 3, 6, 2, 2, 6, 6, 6, 6, 0, 7, 5, 5, 2, 6, 7, 0, 4, 1, 2, 5, 8, 0, 4, 7, 6, 8, 8, 9, 6, 7, 1, 2, 5, 9, 9, 6, 6, 1, 0, 0, 1, 0, 7, 8, 4, 9, 1, 0, 9, 2, 0, 6, 5, 7, 8, 9, 6, 0, 2, 1, 0
Offset: 7

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that e^e^e is transcendental--see Marques and Sondow (2012).

Examples

			3814279.10476022059220921959409...
		

Crossrefs

Cf. A001113 (e), A073226 (e^e), A004002 (e^e^...^e, n times, rounded), A073228 ((e^e)^e), A073231 ((1/e)^(1/e)^(1/e)).

Programs

  • Magma
    Exp(Exp(Exp(1))); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[E^E^E,10,120][[1]] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    exp(exp(exp(1)))
    
  • PARI
    { default(realprecision, 20080); x=exp(exp(exp(1)))/1000000; for (n=7, 20000, d=floor(x); x=(x-d)*10; write("b073227.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

A073244 Decimal expansion of Pi - e.

Original entry on oeis.org

4, 2, 3, 3, 1, 0, 8, 2, 5, 1, 3, 0, 7, 4, 8, 0, 0, 3, 1, 0, 2, 3, 5, 5, 9, 1, 1, 9, 2, 6, 8, 4, 0, 3, 8, 6, 4, 3, 9, 9, 2, 2, 3, 0, 5, 6, 7, 5, 1, 4, 6, 2, 4, 6, 0, 0, 7, 9, 7, 6, 9, 6, 4, 5, 8, 3, 7, 3, 9, 7, 7, 5, 9, 3, 2, 6, 6, 1, 4, 0, 4, 0, 5, 6, 6, 5, 2, 6, 4, 6, 8, 1, 6, 9, 5, 0, 6, 4, 0, 5, 5, 4, 6, 8
Offset: 0

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Examples

			0.42331082513074800310235591192...
		

Crossrefs

Cf. A059742 (Pi+e), A000796 (Pi), A001113 (e), A019609 (Pi*e), A061382 (Pi/e), A061360 (e/Pi), A039661 (e^Pi), A059850 (Pi^e), A073233 (Pi^Pi), A073226 (e^e), A049006 (i^i = e^(-Pi/2)).
Cf. A110564 for continued fraction for Pi - e.

Programs

A194556 Decimal expansion of (9/4)^(27/8) = (27/8)^(9/4).

Original entry on oeis.org

1, 5, 4, 3, 8, 8, 8, 7, 3, 5, 8, 5, 5, 2, 5, 8, 3, 1, 8, 3, 6, 0, 4, 4, 6, 0, 0, 1, 3, 0, 7, 4, 9, 0, 9, 7, 1, 8, 8, 7, 1, 4, 9, 4, 2, 7, 9, 6, 8, 0, 2, 7, 2, 4, 1, 2, 8, 5, 4, 3, 3, 0, 4, 5, 3, 2, 9, 4, 4, 1, 8, 3, 6, 3, 0, 2, 2, 0, 7, 2, 0, 7, 9, 6, 9, 2, 3, 7, 0, 7, 3, 2, 6, 2, 5, 7, 6, 1, 0, 7
Offset: 2

Views

Author

Jonathan Sondow, Aug 30 2011

Keywords

Comments

Positive real numbers x < y with x^y = y^x are parameterized by (x,y) = ((1 + 1/t)^t,(1 + 1/t)^(t+1)) for t > 0. For example, t = 2 gives (x,y) = (9/4,27/8). See Sondow and Marques 2010, pp. 155-157.
(9/4)^(27/8) = (27/8)^(9/4) corresponds to (4/9)^(4/9) = (8/27)^(8/27) (see A194789) under the equivalence x^y = y^x <==> (1/x)^(1/x) = (1/y)^(1/y).

Examples

			15.438887358552583183604460013074909718871494279680272412854330453294418363...
		

Crossrefs

Cf. A073226 (e^e), A194557 (sqrt(3)^sqrt(27) = sqrt(27)^sqrt(3)), A194789 ((4/9)^(4/9) = (8/27)^(8/27)).

Programs

  • Mathematica
    RealDigits[ (9/4)^(27/8), 10, 100] // First

Formula

-((9*ProductLog(-1, -(4/9)*log(9/4)))/(4*log(9/4))), where ProductLog is the Lambert W function, simplifies to 27/8. - Jean-François Alcover, Jun 01 2015

A056072 a(n) = floor(e^e^ ... ^e), with n e's.

Original entry on oeis.org

1, 2, 15, 3814279
Offset: 0

Views

Author

Robert G. Wilson v, Jul 26 2000

Keywords

Comments

The next term is too large to include.
From Vladimir Reshetnikov, Apr 27 2013: (Start)
a(4) = 2331504399007195462289689911...2579139884667434294745087021 (1656521 decimal digits in total), given by initial segment of A085667.
a(5) has more than 10^10^6 decimal digits.
a(6) has more than 10^10^10^6 decimal digits. (End)

Crossrefs

Programs

A194557 Decimal expansion of sqrt(3)^sqrt(27) = sqrt(27)^sqrt(3).

Original entry on oeis.org

1, 7, 3, 6, 1, 9, 0, 5, 2, 5, 0, 9, 5, 3, 1, 3, 5, 2, 1, 5, 4, 1, 5, 7, 1, 4, 8, 2, 6, 8, 3, 3, 2, 6, 7, 5, 8, 2, 2, 9, 5, 5, 3, 2, 1, 8, 4, 8, 9, 0, 8, 6, 4, 0, 7, 8, 4, 5, 4, 6, 9, 6, 0, 5, 7, 4, 4, 6, 7, 6, 3, 7, 4, 5, 8, 4, 3, 3, 5, 6, 3, 1, 2, 3, 2, 3, 4, 2, 1, 7, 1, 0, 0, 6, 1, 8, 3, 5, 2, 5
Offset: 2

Views

Author

Jonathan Sondow, Aug 30 2011

Keywords

Comments

Positive real numbers x < y with x^y = y^x are parameterized by (x,y) = ((1 + 1/t)^t,(1 + 1/t)^(t+1)) for t > 0. For example, t = 1/2 gives (x,y) = (sqrt(3),sqrt(27)). See Sondow and Marques 2010, pp. 155-157.

Examples

			17.361905250953135215415714826833267582295532184890864078454696057446763745...
		

Crossrefs

Cf. A073226 (decimal expansion of e^e), A194556 (decimal expansion of (9/4)^(27/8) = (27/8)^(9/4)).

Programs

  • Mathematica
    RealDigits[ Sqrt[3]^Sqrt[27], 10, 100] // First

Formula

-2*sqrt(3)*ProductLog(-1, -log(3)/(2*sqrt(3)))/log(3), where ProductLog is the Lambert W function, simplifies to sqrt(27). - Jean-François Alcover, Jun 01 2015
Showing 1-10 of 42 results. Next