cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A159825 Continued fraction for e^e^e A073227.

Original entry on oeis.org

3814279, 9, 1, 1, 4, 1, 53, 26, 1, 13, 3, 1, 1, 22, 1, 226, 1, 5, 2, 1, 6, 2, 3, 1, 4, 1, 6, 39, 2, 1, 3, 1, 5, 1, 4, 1, 3, 1, 4, 1, 1, 19, 1, 2, 8899, 5, 2, 2, 1, 3, 3, 2, 2, 2, 1, 1, 3, 5, 1, 6, 10, 2, 1, 2, 1, 1, 1, 2, 2, 4, 1, 10, 2, 6, 1, 5, 6, 2, 4, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 11, 7, 3, 1, 4, 4
Offset: 0

Views

Author

Harry J. Smith, Apr 30 2009

Keywords

Comments

It was conjectured (but remains unproved) that this sequence is infinite and aperiodic, but it is difficult to determine who first posed this problem. - Vladimir Reshetnikov, Apr 27 2013

Examples

			3814279.104760220592209... = 3814279 + 1/(9 + 1/(1 + 1/(1 + 1/(4 + ...)))).
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[E^E^E, 96] (* Vladimir Reshetnikov, Apr 27 2013 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(exp(exp(1)))); for (n=1, 20001, write("b159825.txt", n-1, " ", x[n])); }

A073226 Decimal expansion of e^e.

Original entry on oeis.org

1, 5, 1, 5, 4, 2, 6, 2, 2, 4, 1, 4, 7, 9, 2, 6, 4, 1, 8, 9, 7, 6, 0, 4, 3, 0, 2, 7, 2, 6, 2, 9, 9, 1, 1, 9, 0, 5, 5, 2, 8, 5, 4, 8, 5, 3, 6, 8, 5, 6, 1, 3, 9, 7, 6, 9, 1, 4, 0, 7, 4, 6, 4, 0, 5, 9, 1, 4, 8, 3, 0, 9, 7, 3, 7, 3, 0, 9, 3, 4, 4, 3, 2, 6, 0, 8, 4, 5, 6, 9, 6, 8, 3, 5, 7, 8, 7, 3, 4, 6, 0, 5, 1, 1, 5
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

Given z > 0, there exist positive real numbers x < y, with x^y = y^x = z, if and only if z > e^e. In that case, 1 < x < e < y and (x, y) = ((1 + 1/t)^t, (1 + 1/t)^(t+1)) for some t > 0. (For example, t = 1 gives 2^4 = 4^2 = 16 > e^e.) Proofs of these classical results and applications of them are in Marques and Sondow (2010).
e^e = lim_{n->infinity} ((n+1)/n)^((n+1)^(n+1)/n^n), n > 0 an integer; cf. [Vernescu] wherein it is also stated that the assertions of the previous comment above were proved by Alexandru Lupas in 2006. - L. Edson Jeffery, Sep 18 2012
A weak form of Schanuel's Conjecture implies that e^e is transcendental--see Marques and Sondow (2012).

Examples

			15.15426224147926418976043027262991190552854853685613976914...
		

Crossrefs

Cf. A073233 (Pi^Pi), A049006 (i^i), A001113 (e), A073227 (e^e^e), A004002 (Benford numbers), A056072 (floor(e^e^...^e), n e's), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073229 (e^(1/e)), A073230 ((1/e)^e).

Programs

  • Magma
    Exp(Exp(1)); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[ E^E, 10, 110] [[1]]
  • PARI
    exp(exp(1))
    
  • PARI
    { default(realprecision, 20080); x=exp(1)^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073226.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} e^n/n!. - Richard R. Forberg, Dec 29 2013
Equals Product_{n>=0} e^(1/n!). - Amiram Eldar, Jun 29 2020

A085667 Decimal expansion of e^e^e^e.

Original entry on oeis.org

2, 3, 3, 1, 5, 0, 4, 3, 9, 9, 0, 0, 7, 1, 9, 5, 4, 6, 2, 2, 8, 9, 6, 8, 9, 9, 1, 1, 0, 1, 2, 1, 3, 7, 6, 6, 6, 3, 3, 2, 0, 1, 7, 4, 2, 8, 9, 6, 3, 5, 1, 6, 8, 2, 3, 2, 8, 0, 0, 5, 4, 5, 4, 6, 8, 1, 8, 0, 7, 9, 4, 3, 6, 6, 4, 2, 4, 9, 7, 3, 1, 4, 8, 5, 7, 3, 0, 6, 6, 6, 1, 3, 2, 1, 4, 0, 7, 6, 7
Offset: 1656521

Views

Author

N. J. A. Sloane, Jul 15 2003

Keywords

Examples

			2.331504399007195462289689911012137666332017428963... * 10^1656520
		

Crossrefs

Programs

A056072 a(n) = floor(e^e^ ... ^e), with n e's.

Original entry on oeis.org

1, 2, 15, 3814279
Offset: 0

Views

Author

Robert G. Wilson v, Jul 26 2000

Keywords

Comments

The next term is too large to include.
From Vladimir Reshetnikov, Apr 27 2013: (Start)
a(4) = 2331504399007195462289689911...2579139884667434294745087021 (1656521 decimal digits in total), given by initial segment of A085667.
a(5) has more than 10^10^6 decimal digits.
a(6) has more than 10^10^10^6 decimal digits. (End)

Crossrefs

Programs

A073228 Decimal expansion of (e^e)^e.

Original entry on oeis.org

1, 6, 1, 8, 1, 7, 7, 9, 9, 1, 9, 1, 2, 6, 5, 3, 5, 0, 1, 6, 6, 8, 6, 9, 1, 2, 2, 5, 4, 8, 3, 6, 1, 0, 1, 9, 5, 6, 9, 2, 2, 8, 8, 1, 0, 3, 4, 7, 3, 3, 5, 3, 3, 6, 0, 5, 3, 0, 0, 1, 6, 9, 9, 4, 5, 6, 1, 5, 6, 0, 7, 5, 4, 1, 6, 5, 8, 8, 1, 7, 8, 3, 0, 0, 0, 5, 3, 7, 3, 7, 7, 3, 4, 8, 4, 2, 3, 1, 7, 8, 0, 0, 9, 4, 0
Offset: 4

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			1618.17799191265350166869122548...
		

Crossrefs

Cf. A001113 (e), A073226 (e^e), A073227 (e^e^e), A073231 ((1/e)^(1/e)^(1/e)), A073232 (((1/e)^(1/e))^(1/e)).

Programs

  • Magma
    Exp(Exp(1))^Exp(1); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[(E^E)^E, 10, 120][[1]] (* Alonso del Arte, Jul 03 2012 *)
  • PARI
    exp(exp(1))^exp(1)
    

Formula

(e^e)^e = e^e^2. - Franklin T. Adams-Watters, Jun 20 2014

A073232 Decimal expansion of ((1/e)^(1/e))^(1/e).

Original entry on oeis.org

8, 7, 3, 4, 2, 3, 0, 1, 8, 4, 9, 3, 1, 1, 6, 6, 4, 2, 9, 8, 9, 0, 3, 2, 3, 4, 8, 6, 6, 2, 5, 3, 8, 2, 0, 5, 2, 6, 2, 5, 4, 0, 9, 7, 8, 5, 8, 3, 3, 5, 9, 6, 7, 5, 0, 5, 6, 2, 1, 9, 4, 2, 1, 4, 8, 0, 1, 4, 3, 1, 6, 3, 8, 3, 1, 5, 1, 5, 0, 1, 8, 7, 4, 5, 1, 1, 7, 0, 9, 6, 3, 2, 5, 5, 2, 4, 6, 7, 1, 3, 2, 9, 2, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			0.87342301849311664298903234866...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), A072364 ((1/e)^(1/e)), A073231 ((1/e)^(1/e)^(1/e)), A073228 ((e^e)^e), A073227 (e^e^e).

Programs

  • Mathematica
    RealDigits[((1/E)^(1/E))^(1/E),10,120][[1]]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    exp(-exp(-2))

Formula

Equals e^(-e^(-2)).

A073231 Decimal expansion of (1/e)^(1/e)^(1/e).

Original entry on oeis.org

5, 0, 0, 4, 7, 3, 5, 0, 0, 5, 6, 3, 6, 3, 6, 8, 4, 0, 5, 4, 5, 1, 3, 4, 9, 0, 1, 3, 3, 7, 9, 0, 4, 5, 7, 2, 8, 0, 3, 4, 5, 3, 2, 1, 5, 3, 4, 2, 2, 8, 3, 0, 0, 6, 4, 9, 7, 9, 0, 9, 3, 5, 2, 7, 8, 3, 7, 5, 7, 3, 2, 1, 1, 6, 2, 6, 1, 4, 3, 3, 4, 4, 3, 5, 1, 0, 6, 5, 0, 8, 2, 6, 5, 0, 9, 6, 5, 7, 5, 8, 9, 9, 3, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			0.50047350056363684054513490133...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073232 (((1/e)^(1/e))^(1/e)), A073227 (e^e^e).

Programs

  • Mathematica
    With[{c=1/E},RealDigits[c^c^c,10,120][[1]]] (* Harvey P. Dale, Jul 16 2025 *)
  • PARI
    exp(-1)^exp(-1)^exp(-1)

A187079 Decimal expansion of (sqrt(2 + e^e)/e)^e.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 9, 0, 0, 9, 4, 5, 1, 7, 6, 4, 7, 3, 8, 1, 2, 5, 3, 9, 7, 1, 5, 5, 2, 4, 1, 2, 8, 4, 9, 5, 7, 3, 3, 4, 2, 4, 5, 5, 1, 0, 4, 0, 7, 8, 2, 7, 0, 7, 2, 1, 9, 7, 5, 5, 5, 2, 0, 8, 6, 7, 7, 1, 1, 7, 2, 8, 5, 5, 0, 1, 3, 3, 2, 0, 9, 8, 7, 8, 2, 2, 1, 2, 6, 1, 1, 8, 6, 2, 2, 7, 3, 2, 7, 0, 8, 4, 5, 2, 2
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 08 2011

Keywords

Comments

(sqrt(2 + e^e)/e)^e is an approximation to Pi that's correct to five decimal digits.

Examples

			(sqrt(2+e^e)/e)^e = 3.141599009451764738125397155...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (Sqrt(2+Exp(Exp(1)))/Exp(1))^Exp(1); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf((sqrt(2+exp(1)^exp(1))/exp(1))^exp(1),120); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    RealDigits[N[(Sqrt[2 + E^E]/E)^E, 200]][[1]] (* Arkadiusz Wesolowski, Mar 08 2011 *)
  • PARI
    default(realprecision, 200); e=exp(1); x=(sqrt(2+e^e)/e)^e; for(n=1, 200, d=floor(x); x=(x-d)*10; print1(d, ", ")); \\ Arkadiusz Wesolowski, Mar 08 2011
    

A202949 Decimal expansion of (e^e)^(e^e), where e=exp(1).

Original entry on oeis.org

7, 7, 6, 4, 8, 6, 5, 1, 7, 9, 1, 5, 8, 0, 8, 4, 5, 7, 3, 8, 2, 6, 2, 7, 0, 7, 2, 1, 4, 4, 8, 0, 1, 1, 1, 2, 6, 9, 8, 1, 3, 7, 3, 8, 7, 4, 0, 8, 9, 3, 7, 3, 3, 3, 6, 1, 0, 9, 8, 0, 2, 3, 7, 7, 6, 5, 6, 2, 9, 9, 8, 3, 3, 8, 8, 7, 4, 6, 9, 6, 4, 8, 1, 7, 9, 2, 5, 8, 5, 4, 7, 2, 2, 8, 9
Offset: 18

Views

Author

M. F. Hasler, Dec 26 2011

Keywords

Examples

			776486517915808457.38262707214480111269813738740893733361098023776562998338874696481792585472289...
		

Crossrefs

Cf. A073226, A073227, A073228, A085667, A181180, A073232. - M. F. Hasler, Dec 26 2011

Programs

  • Mathematica
    RealDigits[#^#&/@(E^E),10,120][[1]] (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    default(realprecision,99); t=exp(1); t=t^t; t=t^t

Formula

A171990 Least integer a(n) for which the iterated function log, iterated n times, is defined.

Original entry on oeis.org

1, 2, 3, 16, 3814280
Offset: 1

Views

Author

Keywords

Comments

Log(a(1)) is defined if a(1) > 0, so a(1) = 1.
Log(log(a(2))) is defined if log(a(2)) > 0 => a(2) > 1 => a(2) = 2.
The sequence grows rapidly: a(6) = 2.33150...10^1656520, and is too large to include here.

Examples

			a(2) = 2 because log(log(2)) is defined and log(log(1)) is not;
a(3) = 3 because log(log(log(3))) is defined;
a(4) = 16 because log(log(log(log(16)))) is defined.
From _Robert G. Wilson v_, Jul 05 2022: (Start)
a(3) = ceiling(A001113).
a(4) = ceiling(A073226).
a(5) = ceiling(A073227).
a(6) = ceiling(A085667). (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(1, my(s=k, i=0); while(s > 0, s=log(s); if(s > 0, i++)); if(i==n-1, return(k)); k++) \\ Felix Fröhlich, Nov 22 2015

Formula

For n > 2, a(n) = ceiling(e^(e^(...))) where e appears n-2 times.
Showing 1-10 of 10 results.