cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073227 Decimal expansion of e^e^e.

Original entry on oeis.org

3, 8, 1, 4, 2, 7, 9, 1, 0, 4, 7, 6, 0, 2, 2, 0, 5, 9, 2, 2, 0, 9, 2, 1, 9, 5, 9, 4, 0, 9, 8, 2, 0, 3, 5, 7, 1, 0, 2, 3, 9, 4, 0, 5, 3, 6, 2, 2, 6, 6, 6, 6, 0, 7, 5, 5, 2, 6, 7, 0, 4, 1, 2, 5, 8, 0, 4, 7, 6, 8, 8, 9, 6, 7, 1, 2, 5, 9, 9, 6, 6, 1, 0, 0, 1, 0, 7, 8, 4, 9, 1, 0, 9, 2, 0, 6, 5, 7, 8, 9, 6, 0, 2, 1, 0
Offset: 7

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that e^e^e is transcendental--see Marques and Sondow (2012).

Examples

			3814279.10476022059220921959409...
		

Crossrefs

Cf. A001113 (e), A073226 (e^e), A004002 (e^e^...^e, n times, rounded), A073228 ((e^e)^e), A073231 ((1/e)^(1/e)^(1/e)).

Programs

  • Magma
    Exp(Exp(Exp(1))); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[E^E^E,10,120][[1]] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    exp(exp(exp(1)))
    
  • PARI
    { default(realprecision, 20080); x=exp(exp(exp(1)))/1000000; for (n=7, 20000, d=floor(x); x=(x-d)*10; write("b073227.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

A073228 Decimal expansion of (e^e)^e.

Original entry on oeis.org

1, 6, 1, 8, 1, 7, 7, 9, 9, 1, 9, 1, 2, 6, 5, 3, 5, 0, 1, 6, 6, 8, 6, 9, 1, 2, 2, 5, 4, 8, 3, 6, 1, 0, 1, 9, 5, 6, 9, 2, 2, 8, 8, 1, 0, 3, 4, 7, 3, 3, 5, 3, 3, 6, 0, 5, 3, 0, 0, 1, 6, 9, 9, 4, 5, 6, 1, 5, 6, 0, 7, 5, 4, 1, 6, 5, 8, 8, 1, 7, 8, 3, 0, 0, 0, 5, 3, 7, 3, 7, 7, 3, 4, 8, 4, 2, 3, 1, 7, 8, 0, 0, 9, 4, 0
Offset: 4

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			1618.17799191265350166869122548...
		

Crossrefs

Cf. A001113 (e), A073226 (e^e), A073227 (e^e^e), A073231 ((1/e)^(1/e)^(1/e)), A073232 (((1/e)^(1/e))^(1/e)).

Programs

  • Magma
    Exp(Exp(1))^Exp(1); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[(E^E)^E, 10, 120][[1]] (* Alonso del Arte, Jul 03 2012 *)
  • PARI
    exp(exp(1))^exp(1)
    

Formula

(e^e)^e = e^e^2. - Franklin T. Adams-Watters, Jun 20 2014

A073232 Decimal expansion of ((1/e)^(1/e))^(1/e).

Original entry on oeis.org

8, 7, 3, 4, 2, 3, 0, 1, 8, 4, 9, 3, 1, 1, 6, 6, 4, 2, 9, 8, 9, 0, 3, 2, 3, 4, 8, 6, 6, 2, 5, 3, 8, 2, 0, 5, 2, 6, 2, 5, 4, 0, 9, 7, 8, 5, 8, 3, 3, 5, 9, 6, 7, 5, 0, 5, 6, 2, 1, 9, 4, 2, 1, 4, 8, 0, 1, 4, 3, 1, 6, 3, 8, 3, 1, 5, 1, 5, 0, 1, 8, 7, 4, 5, 1, 1, 7, 0, 9, 6, 3, 2, 5, 5, 2, 4, 6, 7, 1, 3, 2, 9, 2, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			0.87342301849311664298903234866...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), A072364 ((1/e)^(1/e)), A073231 ((1/e)^(1/e)^(1/e)), A073228 ((e^e)^e), A073227 (e^e^e).

Programs

  • Mathematica
    RealDigits[((1/E)^(1/E))^(1/E),10,120][[1]]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    exp(-exp(-2))

Formula

Equals e^(-e^(-2)).
Showing 1-3 of 3 results.