cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A073233 Decimal expansion of Pi^Pi.

Original entry on oeis.org

3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

Examples

			36.4621596072079117709908260226...
		

Crossrefs

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).
Cf. A073226 (e^e).
Cf. A049006 (i^i), A116186 (real part of i^i^i).
Cf. A194555 (real part of i^e^Pi).

Programs

  • Mathematica
    RealDigits[N[Pi^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    Pi^Pi
    
  • PARI
    { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009

A073240 Decimal expansion of (1/Pi)^(1/Pi).

Original entry on oeis.org

6, 9, 4, 6, 2, 7, 9, 9, 2, 2, 4, 6, 8, 2, 6, 1, 5, 3, 1, 2, 4, 3, 8, 3, 7, 6, 1, 4, 1, 0, 8, 3, 8, 6, 1, 0, 0, 6, 1, 7, 2, 6, 9, 1, 8, 9, 1, 0, 9, 7, 2, 4, 6, 0, 1, 9, 8, 1, 9, 5, 6, 4, 9, 1, 4, 9, 8, 3, 3, 4, 5, 8, 7, 6, 6, 5, 1, 0, 8, 9, 9, 1, 3, 1, 0, 0, 9, 9, 2, 6, 8, 8, 1, 7, 2, 3, 9, 1, 8, 5, 5, 0, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Jul 27 2002

Keywords

Comments

(1/Pi)^(1/Pi) = Pi^(-1/Pi) = 1/(Pi^(1/Pi)) (reciprocal of A073238).

Examples

			0.69462799224682615312438376141...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073241 ((1/Pi)^(1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073233 (Pi^Pi).

Programs

  • Mathematica
    First[RealDigits[(1/Pi)^(1/Pi),10,100]] (* Paolo Xausa, Nov 07 2023 *)
  • PARI
    (1/Pi)^(1/Pi)

A231737 Decimal expansion of the natural logarithm of Pi^(1/Pi).

Original entry on oeis.org

3, 6, 4, 3, 7, 8, 8, 3, 9, 6, 7, 5, 9, 0, 6, 2, 5, 7, 0, 4, 9, 5, 8, 7, 7, 3, 0, 3, 1, 6, 1, 6, 2, 4, 1, 3, 8, 9, 1, 7, 0, 7, 0, 3, 9, 0, 9, 8, 6, 0, 5, 5, 5, 0, 4, 7, 4, 6, 6, 9, 2, 1, 8, 6, 1, 0, 7, 9, 8, 1, 7, 6, 7, 5, 3, 7, 1, 3, 1, 5, 2, 9, 7, 2, 5, 8, 5, 9, 9, 3, 8, 2, 5, 2, 0, 1, 8, 5, 4, 0, 0, 6, 9, 7, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 13 2013

Keywords

Examples

			0.3643788396759062570495877303161624138917070390986055504746692...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Pi]/Pi, 10, 120][[1]] (* Amiram Eldar, May 17 2023 *)
  • PARI
    log(Pi)/Pi

Formula

Equals log(Pi)/Pi.

A073239 Decimal expansion of (1/Pi)^Pi.

Original entry on oeis.org

0, 2, 7, 4, 2, 5, 6, 9, 3, 1, 2, 3, 2, 9, 8, 1, 0, 6, 1, 1, 9, 5, 5, 6, 2, 7, 0, 8, 5, 9, 0, 9, 6, 5, 9, 4, 4, 5, 4, 4, 2, 5, 1, 1, 4, 5, 3, 7, 4, 4, 8, 3, 0, 7, 7, 6, 3, 3, 8, 6, 7, 9, 1, 3, 2, 6, 4, 0, 2, 3, 9, 5, 8, 0, 1, 2, 3, 0, 3, 9, 6, 7, 2, 0, 9, 0, 1, 7, 6, 6, 9, 3, 4, 2, 8, 9, 6, 1, 9, 4, 7, 0, 6, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

(1/Pi)^Pi = Pi^(-Pi) = 1/(Pi^Pi) (reciprocal of A073233).

Examples

			0.02742569312329810611955627085...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073238 (Pi^(1/Pi)), A073240 ((1/Pi)^(1/Pi)), A073233 (Pi^Pi).

Programs

  • Mathematica
    Join[{0},RealDigits[(1/Pi)^Pi,10,120][[1]]] (* Harvey P. Dale, Nov 30 2011 *)
  • PARI
    (1/Pi)^Pi

A159824 Continued fraction for Pi^Pi (cf. A073233).

Original entry on oeis.org

36, 2, 6, 9, 2, 1, 2, 5, 1, 1, 6, 2, 1, 291, 1, 38, 50, 1, 2, 5, 4, 1, 2, 2, 1, 5, 1, 4, 13, 2, 1, 4, 3, 3, 1, 2, 25, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 1, 43, 1, 2, 7, 3, 1, 1, 1, 2, 4, 2, 1, 1, 3, 1, 3, 3, 2, 2, 16, 3, 5, 2, 1, 5, 2, 1, 10, 1, 1, 3, 1, 13, 1, 1, 3, 1, 10, 4, 1, 1, 1, 38, 1, 2, 2, 1, 1, 3
Offset: 0

Views

Author

Harry J. Smith, Apr 30 2009

Keywords

Examples

			36.4621596072079117709908260... = 36 + 1/(2 + 1/(6 + 1/(9 + 1/(2 + ...)))).
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Pi^Pi,200] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2010 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^Pi); for (n=1, 20001, write("b159824.txt", n-1, " ", x[n])); }

Extensions

Edited by N. J. A. Sloane, Jul 22 2010

A179617 Continued fraction for Pi^(1/Pi).

Original entry on oeis.org

1, 2, 3, 1, 1, 1, 3, 1, 1, 3, 2, 1, 6, 3, 4, 2, 1, 14, 1, 1, 5, 2, 2, 2, 1, 3, 23, 1, 26, 23, 13, 1, 1, 1, 5, 2, 8, 12, 1, 1, 1, 3, 5, 23, 31, 7, 1, 1, 2, 5, 4, 1, 1, 6, 1, 72, 4, 1, 1, 1, 7, 2, 1, 1, 2, 49, 3, 1, 4, 2, 3, 2, 1, 1, 6, 2, 3, 3, 1, 1, 26, 2, 2, 11, 5, 3, 5, 1, 2, 1, 12, 1, 558, 1, 1, 3, 1, 76
Offset: 0

Views

Author

Keywords

Comments

Pi^(1/Pi) = 1.43961949584759068833649080497375567869829...

Crossrefs

Cf. A001203, A073238 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Pi^(1/Pi),200]

Extensions

Offset changed by Andrew Howroyd, Jul 07 2024

A348261 Decimal expansion of the nontrivial number x for which x^Pi = Pi^x.

Original entry on oeis.org

2, 3, 8, 2, 1, 7, 9, 0, 8, 7, 9, 9, 3, 0, 1, 8, 7, 7, 4, 5, 5, 5, 5, 9, 3, 0, 5, 2, 5, 2, 0, 8, 7, 8, 5, 3, 5, 6, 8, 9, 7, 6, 7, 9, 9, 6, 7, 8, 2, 3, 2, 5, 9, 1, 0, 1, 2, 9, 4, 8, 1, 1, 7, 7, 1, 3, 5, 3, 4, 4, 4, 6, 9, 0, 7, 4, 6, 9, 3, 5, 4, 1, 6, 6, 8, 7, 5, 8, 2, 5, 3, 9, 6, 1, 6, 6, 9, 2, 2, 0, 8, 9, 7, 2, 1, 4
Offset: 1

Views

Author

Timothy L. Tiffin, Oct 08 2021

Keywords

Comments

The x-th root of x equals the Pi-th root of Pi: x^(1/x) = Pi^(1/Pi) = A073238 = 1.43961949584759... .
Like Pi, is x also transcendental?

Examples

			2.382179087993018774555593052520878...
x^Pi = Pi^x = 15.28621734783496640312486439999472... .
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073238 (Pi^(1/Pi)), A073226 (e^e, see first comment), A231737.

Programs

  • Maple
    evalf((t-> -LambertW(-t)/t)(log(Pi)/Pi), 120);  # Alois P. Heinz, Oct 13 2021
  • Mathematica
    {a, b} = NSolve[x^Pi == Pi^x, x, WorkingPrecision -> 300]; a; RealDigits[N[x/.a, 300]][[1]]

Formula

Equals -Pi*LambertW(-log(Pi)/Pi)/log(Pi). - Alois P. Heinz, Oct 13 2021
Showing 1-7 of 7 results.