cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073233 Decimal expansion of Pi^Pi.

Original entry on oeis.org

3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

Examples

			36.4621596072079117709908260226...
		

Crossrefs

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).
Cf. A073226 (e^e).
Cf. A049006 (i^i), A116186 (real part of i^i^i).
Cf. A194555 (real part of i^e^Pi).

Programs

  • Mathematica
    RealDigits[N[Pi^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    Pi^Pi
    
  • PARI
    { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009

A073238 Decimal expansion of Pi^(1/Pi).

Original entry on oeis.org

1, 4, 3, 9, 6, 1, 9, 4, 9, 5, 8, 4, 7, 5, 9, 0, 6, 8, 8, 3, 3, 6, 4, 9, 0, 8, 0, 4, 9, 7, 3, 7, 5, 5, 6, 7, 8, 6, 9, 8, 2, 9, 6, 4, 7, 4, 4, 5, 6, 6, 4, 0, 9, 8, 2, 2, 3, 3, 1, 6, 0, 6, 4, 1, 8, 9, 0, 2, 4, 3, 4, 3, 9, 4, 8, 9, 1, 7, 5, 8, 4, 7, 8, 1, 9, 7, 7, 5, 0, 4, 6, 5, 9, 8, 4, 1, 3, 0, 4, 2, 0, 3, 4, 4, 2
Offset: 1

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

Pi^(1/Pi) = 1/((1/Pi)^(1/Pi)) (reciprocal of A073240).

Examples

			1.43961949584759068833649080497...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073233 (Pi^Pi).

Programs

A073240 Decimal expansion of (1/Pi)^(1/Pi).

Original entry on oeis.org

6, 9, 4, 6, 2, 7, 9, 9, 2, 2, 4, 6, 8, 2, 6, 1, 5, 3, 1, 2, 4, 3, 8, 3, 7, 6, 1, 4, 1, 0, 8, 3, 8, 6, 1, 0, 0, 6, 1, 7, 2, 6, 9, 1, 8, 9, 1, 0, 9, 7, 2, 4, 6, 0, 1, 9, 8, 1, 9, 5, 6, 4, 9, 1, 4, 9, 8, 3, 3, 4, 5, 8, 7, 6, 6, 5, 1, 0, 8, 9, 9, 1, 3, 1, 0, 0, 9, 9, 2, 6, 8, 8, 1, 7, 2, 3, 9, 1, 8, 5, 5, 0, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Jul 27 2002

Keywords

Comments

(1/Pi)^(1/Pi) = Pi^(-1/Pi) = 1/(Pi^(1/Pi)) (reciprocal of A073238).

Examples

			0.69462799224682615312438376141...
		

Crossrefs

Cf. A000796 (Pi), A049541 (1/Pi), A073241 ((1/Pi)^(1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073233 (Pi^Pi).

Programs

  • Mathematica
    First[RealDigits[(1/Pi)^(1/Pi),10,100]] (* Paolo Xausa, Nov 07 2023 *)
  • PARI
    (1/Pi)^(1/Pi)
Showing 1-3 of 3 results.