cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A073233 Decimal expansion of Pi^Pi.

Original entry on oeis.org

3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

Examples

			36.4621596072079117709908260226...
		

Crossrefs

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).
Cf. A073226 (e^e).
Cf. A049006 (i^i), A116186 (real part of i^i^i).
Cf. A194555 (real part of i^e^Pi).

Programs

  • Mathematica
    RealDigits[N[Pi^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    Pi^Pi
    
  • PARI
    { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009

A202955 Decimal expansion of Pi^Pi^Pi^Pi.

Original entry on oeis.org

9, 0, 8, 0, 2, 2, 2, 4, 5, 5, 3, 9, 0, 6, 1, 7, 7, 6, 9, 7, 2, 3, 9, 3, 1, 7, 1, 3, 2, 8, 4, 2, 8, 7, 7, 4, 6, 5, 1, 6, 0, 4, 6, 3, 5, 8, 1, 3, 1, 8, 9, 7, 3, 5, 9, 9, 4, 6, 9, 3, 5, 9, 2, 6, 3, 3, 6, 8, 4, 5, 1, 9, 9, 0, 5, 8, 1, 5, 3, 6, 0, 9, 5, 6, 8, 6, 6, 7, 6, 7, 2, 6, 0, 1, 7, 6, 8, 6, 3, 1, 3, 6, 9, 4, 2, 0, 9, 8, 3, 7, 4, 4, 2, 6, 5, 5
Offset: 666262452970848504

Views

Author

M. F. Hasler, Dec 26 2011

Keywords

Comments

The offset equals the floor(Pi^Pi^Pi*Log_10(Pi))+1. - Robert G. Wilson v, Mar 13 2014
Whether this number is an integer or not is an open question. It is also an open question whether Pi^Pi^Pi^...^Pi^Pi n times is an integer for any natural n > 4. - Eliora Ben-Gurion, Nov 17 2019

Examples

			9.080222455390617769723931713284287746516046358131897359946935926336845199... *10^666262452970848503
		

Crossrefs

Cf. A073236, A085667, A000796 (Pi), A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073235 ((Pi^Pi)^Pi), A202953 ((Pi^Pi)^(Pi^Pi)).

Programs

  • Mathematica
    nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[exp*Log10[base], nbrdgt + Floor[Log10[exp]] + 2]], 10, nbrdgt][[1]]; f[Pi, Pi^Pi^Pi] (* Robert G. Wilson v, Mar 13 2014 *)
  • PARI
    LP(a,b)=[10^frac(a=log(a)/log(10)*b),a\1] /* returns [m,e] such that a^b = m*10^e */
    LP(Pi,Pi^Pi^Pi)

Formula

A073234 Decimal expansion of Pi^(Pi^Pi).

Original entry on oeis.org

1, 3, 4, 0, 1, 6, 4, 1, 8, 3, 0, 0, 6, 3, 5, 7, 4, 3, 5, 2, 9, 7, 4, 4, 9, 1, 2, 9, 6, 4, 0, 1, 3, 1, 4, 1, 5, 0, 9, 9, 3, 7, 4, 9, 7, 4, 5, 7, 3, 4, 9, 9, 2, 3, 7, 7, 8, 7, 9, 2, 7, 5, 1, 6, 5, 8, 6, 0, 3, 4, 0, 9, 2, 6, 1, 9, 0, 9, 4, 0, 6, 8, 1, 4, 8, 2, 6, 9, 4, 7, 2, 6, 1, 1, 3, 0, 1, 1, 4, 2, 2, 7, 3, 4, 3
Offset: 19

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Examples

			1340164183006357435.29744912964...
		

References

  • Christopher Creutzig & Walter Oevel, MuPAD Tutorial. Berlin: Springer-Verlag (2004): 339.

Crossrefs

Cf. A000796 (Pi), A073233 (Pi^Pi), A202955 (Pi^Pi^Pi^Pi), A073236 (Pi^Pi^...^Pi, n times, rounded), A073235 ((Pi^Pi)^Pi), A073241 ((1/Pi)^(1/Pi)^(1/Pi)).

Programs

  • Mathematica
    RealDigits[Pi^Pi^Pi, 10, 100][[1]] (* Alonso del Arte, Jul 03 2012 *)
  • MuPAD
    DIGITS := 100:
    float(PI^(PI^PI)) // from Creutzig & Oevel (2004)
  • PARI
    Pi^Pi^Pi
    
  • PARI
    { default(realprecision, 20100); x=Pi^Pi^Pi/10^18; for (n=19, 20000, d=floor(x); x=(x-d)*10; write("b073234.txt", n, " ", d)); } \\ Harry J. Smith, May 01 2009, corrected May 19 2009, had -n
    

A004002 Benford numbers: a(n) = e^e^...^e (n times) rounded to nearest integer.

Original entry on oeis.org

1, 3, 15, 3814279
Offset: 0

Views

Author

Keywords

Comments

The next term, a(4) ~ 2.3315*10^1656520, has 1656521 decimal digits and is therefore too large to be included. [Rephrased by M. F. Hasler, May 01 2013]
Named by Turner (1991) after the American electrical engineer and physicist Frank Albert Benford, Jr. (1883-1948). - Amiram Eldar, Jun 26 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A073236. - Melissa O'Neill, Jul 04 2015

Programs

  • Maple
    p:= n-> `if`(n=0, 1, exp(1)^p(n-1)):
    a:= n-> round(p(n)):
    seq(a(n), n=0..3);  # Alois P. Heinz, Jul 20 2024
  • Mathematica
    Round[NestList[Power[E, #] &, 1, 3]] (* Melissa O'Neill, Jul 04 2015 *)

Formula

a(n) = round(e^e^...^e), where e occurs n times, a(0) = 1 (= e^0). - Melissa O'Neill, Jul 04 2015

A073237 a(n) = ceiling(Pi^Pi^...^Pi), where Pi appears n times.

Original entry on oeis.org

1, 4, 37, 1340164183006357436
Offset: 0

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

Decimal expansions (before taking ceiling) of Pi (A000796), Pi^Pi (A073233) and Pi^Pi^Pi (A073234) correspond to a(1), a(2) and a(3), respectively. See A073236 for same sequence rounded to nearest integer. This sequence is similar to A004002, which deals with e (but rounds).
a(4) has 666262452970848504 digits. - Martin Renner, Aug 19 2023

Crossrefs

Cf. A000796 (Pi), A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073236 (Pi^Pi^...^Pi, n times, rounded), A004002 (Benford numbers), A056072 (similar to A004002 but takes floor).

Programs

  • Maple
    p:= n-> `if`(n=0, 1, Pi^p(n-1)):
    a:= n-> ceil(p(n)):
    seq(a(n), n=0..3);  # Alois P. Heinz, Jul 20 2024
  • PARI
    p=0; for(n=0,3, p=Pi^p; print1(ceil(p),",")) \\ n=4 produces too large an exponent for PARI.

Formula

a(n) = ceiling(Pi^Pi^...^Pi), where Pi occurs n times, a(0) = 1 (=Pi^0).

A210508 a(n) = floor(((Pi^Pi)^Pi)^...^Pi).

Original entry on oeis.org

1, 3, 36, 80662, 2598761979625197, 2672496879634073073044276636697073994497970453122
Offset: 0

Views

Author

Jon Perry, Jan 25 2013

Keywords

Comments

a(6) has more than 140 decimal digits and is too big to display. - L. Edson Jeffery, Jan 28 2013

Examples

			Pi^Pi = 36.4621596072079, so a(2) = 36.
		

Crossrefs

Programs

Formula

a(n) = floor(((Pi^Pi)^Pi)^...^Pi) (Pi appears n times).
a(n) = floor(Pi^(Pi^(n-1))). - Charles R Greathouse IV, Jan 28 2013

Extensions

a(4) corrected by L. Edson Jeffery and Alonso del Arte, Jan 28 2013
a(5) added by L. Edson Jeffery, Jan 28 2013
a(0)=1 prepended by Alois P. Heinz, Jul 20 2024
Showing 1-6 of 6 results.