cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A073226 Decimal expansion of e^e.

Original entry on oeis.org

1, 5, 1, 5, 4, 2, 6, 2, 2, 4, 1, 4, 7, 9, 2, 6, 4, 1, 8, 9, 7, 6, 0, 4, 3, 0, 2, 7, 2, 6, 2, 9, 9, 1, 1, 9, 0, 5, 5, 2, 8, 5, 4, 8, 5, 3, 6, 8, 5, 6, 1, 3, 9, 7, 6, 9, 1, 4, 0, 7, 4, 6, 4, 0, 5, 9, 1, 4, 8, 3, 0, 9, 7, 3, 7, 3, 0, 9, 3, 4, 4, 3, 2, 6, 0, 8, 4, 5, 6, 9, 6, 8, 3, 5, 7, 8, 7, 3, 4, 6, 0, 5, 1, 1, 5
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

Given z > 0, there exist positive real numbers x < y, with x^y = y^x = z, if and only if z > e^e. In that case, 1 < x < e < y and (x, y) = ((1 + 1/t)^t, (1 + 1/t)^(t+1)) for some t > 0. (For example, t = 1 gives 2^4 = 4^2 = 16 > e^e.) Proofs of these classical results and applications of them are in Marques and Sondow (2010).
e^e = lim_{n->infinity} ((n+1)/n)^((n+1)^(n+1)/n^n), n > 0 an integer; cf. [Vernescu] wherein it is also stated that the assertions of the previous comment above were proved by Alexandru Lupas in 2006. - L. Edson Jeffery, Sep 18 2012
A weak form of Schanuel's Conjecture implies that e^e is transcendental--see Marques and Sondow (2012).

Examples

			15.15426224147926418976043027262991190552854853685613976914...
		

Crossrefs

Cf. A073233 (Pi^Pi), A049006 (i^i), A001113 (e), A073227 (e^e^e), A004002 (Benford numbers), A056072 (floor(e^e^...^e), n e's), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073229 (e^(1/e)), A073230 ((1/e)^e).

Programs

  • Magma
    Exp(Exp(1)); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[ E^E, 10, 110] [[1]]
  • PARI
    exp(exp(1))
    
  • PARI
    { default(realprecision, 20080); x=exp(1)^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073226.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} e^n/n!. - Richard R. Forberg, Dec 29 2013
Equals Product_{n>=0} e^(1/n!). - Amiram Eldar, Jun 29 2020

A073233 Decimal expansion of Pi^Pi.

Original entry on oeis.org

3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

Examples

			36.4621596072079117709908260226...
		

Crossrefs

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).
Cf. A073226 (e^e).
Cf. A049006 (i^i), A116186 (real part of i^i^i).
Cf. A194555 (real part of i^e^Pi).

Programs

  • Mathematica
    RealDigits[N[Pi^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    Pi^Pi
    
  • PARI
    { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009

A073227 Decimal expansion of e^e^e.

Original entry on oeis.org

3, 8, 1, 4, 2, 7, 9, 1, 0, 4, 7, 6, 0, 2, 2, 0, 5, 9, 2, 2, 0, 9, 2, 1, 9, 5, 9, 4, 0, 9, 8, 2, 0, 3, 5, 7, 1, 0, 2, 3, 9, 4, 0, 5, 3, 6, 2, 2, 6, 6, 6, 6, 0, 7, 5, 5, 2, 6, 7, 0, 4, 1, 2, 5, 8, 0, 4, 7, 6, 8, 8, 9, 6, 7, 1, 2, 5, 9, 9, 6, 6, 1, 0, 0, 1, 0, 7, 8, 4, 9, 1, 0, 9, 2, 0, 6, 5, 7, 8, 9, 6, 0, 2, 1, 0
Offset: 7

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that e^e^e is transcendental--see Marques and Sondow (2012).

Examples

			3814279.10476022059220921959409...
		

Crossrefs

Cf. A001113 (e), A073226 (e^e), A004002 (e^e^...^e, n times, rounded), A073228 ((e^e)^e), A073231 ((1/e)^(1/e)^(1/e)).

Programs

  • Magma
    Exp(Exp(Exp(1))); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[E^E^E,10,120][[1]] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    exp(exp(exp(1)))
    
  • PARI
    { default(realprecision, 20080); x=exp(exp(exp(1)))/1000000; for (n=7, 20000, d=floor(x); x=(x-d)*10; write("b073227.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

A056072 a(n) = floor(e^e^ ... ^e), with n e's.

Original entry on oeis.org

1, 2, 15, 3814279
Offset: 0

Views

Author

Robert G. Wilson v, Jul 26 2000

Keywords

Comments

The next term is too large to include.
From Vladimir Reshetnikov, Apr 27 2013: (Start)
a(4) = 2331504399007195462289689911...2579139884667434294745087021 (1656521 decimal digits in total), given by initial segment of A085667.
a(5) has more than 10^10^6 decimal digits.
a(6) has more than 10^10^10^6 decimal digits. (End)

Crossrefs

Programs

A073236 Pi^Pi^...^Pi (n times) rounded to nearest integer.

Original entry on oeis.org

1, 3, 36, 1340164183006357435
Offset: 0

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

Decimal expansions (before rounding) of Pi (A000796), Pi^Pi (A073233) and Pi^Pi^Pi (A073234) correspond to a(1), a(2) and a(3), respectively. All four terms are equivalent if floor is used instead of round. See A073237 for same sequence but using ceiling. This sequence is the analog of A004002, which deals with e.
a(4) has 666262452970848504 digits. - Mateusz Winiarski, Mar 23 2020; corrected by Martin Renner, Aug 23 2023

Crossrefs

Cf. A000796 (Pi), A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073237 (Ceiling of Pi^Pi^...^Pi, n times), A004002 (Benford numbers).

Programs

  • Maple
    p:= n-> `if`(n=0, 1, Pi^p(n-1)):
    a:= n-> round(p(n)):
    seq(a(n), n=0..3);  # Alois P. Heinz, Jul 20 2024
  • Mathematica
    Round[NestList[Power[Pi, #] &, 1, 3]] (* Alonso del Arte, Jul 02 2014 *)
  • PARI
    p=0; for(n=0,3, p=Pi^p; print1(round(p),",")) \\ n = 4 produces too large an exponent for PARI.

Formula

a(n) = round(Pi^Pi^...^Pi), where Pi occurs n times, a(0) = 1 (=Pi^0).

A225053 Second terms of continued fractions for power towers e, e^e, e^e^e, ...

Original entry on oeis.org

1, 6, 9, 4
Offset: 1

Views

Author

Vladimir Reshetnikov, Apr 25 2013

Keywords

Comments

It was conjectured (but remains unproved) that none of the power towers e, e^e, e^e^e, ... are integers. If so, the corresponding continued fractions contain at least 2 terms. If the conjecture fails, let the corresponding a(n) = 0.

Examples

			a(3) = 9 because floor(1/frac(e^e^e)) = 9, since e^e^e ~ 3814279.10476.
		

Crossrefs

A056072 yields the first term of the continued fraction.

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; terms = 4; Map[Function[x, ContinuedFraction[x, 2][[2]]], NestList[Exp, E, terms - 1]]

A073237 a(n) = ceiling(Pi^Pi^...^Pi), where Pi appears n times.

Original entry on oeis.org

1, 4, 37, 1340164183006357436
Offset: 0

Views

Author

Rick L. Shepherd, Jul 25 2002

Keywords

Comments

Decimal expansions (before taking ceiling) of Pi (A000796), Pi^Pi (A073233) and Pi^Pi^Pi (A073234) correspond to a(1), a(2) and a(3), respectively. See A073236 for same sequence rounded to nearest integer. This sequence is similar to A004002, which deals with e (but rounds).
a(4) has 666262452970848504 digits. - Martin Renner, Aug 19 2023

Crossrefs

Cf. A000796 (Pi), A073233 (Pi^Pi), A073234 (Pi^Pi^Pi), A073236 (Pi^Pi^...^Pi, n times, rounded), A004002 (Benford numbers), A056072 (similar to A004002 but takes floor).

Programs

  • Maple
    p:= n-> `if`(n=0, 1, Pi^p(n-1)):
    a:= n-> ceil(p(n)):
    seq(a(n), n=0..3);  # Alois P. Heinz, Jul 20 2024
  • PARI
    p=0; for(n=0,3, p=Pi^p; print1(ceil(p),",")) \\ n=4 produces too large an exponent for PARI.

Formula

a(n) = ceiling(Pi^Pi^...^Pi), where Pi occurs n times, a(0) = 1 (=Pi^0).

A056165 e^[e^[e^ ... [e^0] ... ]], n high, where [] is "floor".

Original entry on oeis.org

1, 2, 7, 1096
Offset: 0

Views

Author

Robert G. Wilson v, Jul 31 2000

Keywords

Crossrefs

Extensions

The next term is 9.69956295034023667235191839... *10^475

A171990 Least integer a(n) for which the iterated function log, iterated n times, is defined.

Original entry on oeis.org

1, 2, 3, 16, 3814280
Offset: 1

Views

Author

Keywords

Comments

Log(a(1)) is defined if a(1) > 0, so a(1) = 1.
Log(log(a(2))) is defined if log(a(2)) > 0 => a(2) > 1 => a(2) = 2.
The sequence grows rapidly: a(6) = 2.33150...10^1656520, and is too large to include here.

Examples

			a(2) = 2 because log(log(2)) is defined and log(log(1)) is not;
a(3) = 3 because log(log(log(3))) is defined;
a(4) = 16 because log(log(log(log(16)))) is defined.
From _Robert G. Wilson v_, Jul 05 2022: (Start)
a(3) = ceiling(A001113).
a(4) = ceiling(A073226).
a(5) = ceiling(A073227).
a(6) = ceiling(A085667). (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(1, my(s=k, i=0); while(s > 0, s=log(s); if(s > 0, i++)); if(i==n-1, return(k)); k++) \\ Felix Fröhlich, Nov 22 2015

Formula

For n > 2, a(n) = ceiling(e^(e^(...))) where e appears n-2 times.
Showing 1-9 of 9 results.