cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David Ulgenes

David Ulgenes's wiki page.

David Ulgenes has authored 6 sequences.

A386678 Triangle of numerators for rational convergents to Taylor series of Gamma(x+1).

Original entry on oeis.org

1, 1, 0, 1, -1, 5, 1, -17, 1045, -35801, 1, -181, 104905, -38432557, 15859708705, 1, -5197, 82178809, -864396960373, 9983212589988481, -112929359515545345757, 1, -4129, 101866157, -213193733657, 15527707142596399, -138932602159504972471, 2493923095641600267646643, 1
Offset: 0

Author

David Ulgenes, Aug 09 2025

Keywords

Comments

T(n, k) is the numerator of the k-th coefficient in a degree n polynomial approximation to Gamma(x+1) with rational coefficients.
That is, Gamma(x+1) ~ Sum_{j=0..n} A386678(n, j) * x^j / A386679(n, j) which is exact as lim_{n->oo}.

Examples

			Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -numerator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1045. Doing this for each row yields the full table
  1;
  1, 0;
  1, -1/4, 5/16;
  1, -17/36, 1045/1296, -35801/46656;
  1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136;
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]

Formula

Let A(n, k) be the triangle of coefficients A386675(n, k)/A386676(n, k) (see example).
Then T(0, 0) = 1, and for n>=1, T(n, k) = -numerator(Sum_{j=1..k} A(n, j) * T(n, k-j)). This follows immediately from the Cauchy product applied to (1/f(x)) * f(x) = 1.
T(n, k) is also the k-th coefficient in the Taylor series of 1/(Sum_{j=0..n} A(n, j) * x^j).
Equivalently T(n, k) is the k-th coefficient in the polynomial division 1/(Sum_{j=0..n} A(n, j) * x^j).

A386679 Triangle of denominators for rational convergents to Taylor series of Gamma(x+1).

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 1, 36, 1296, 46656, 1, 288, 82944, 23887872, 6879707136, 1, 7200, 51840000, 373248000000, 2687385600000000, 19349176320000000000, 1, 5400, 58320000, 78732000000, 3401222400000000, 18366600960000000000, 198359290368000000000000, 1, 264600, 140026320000, 9262741068000000, 19607370292742400000000
Offset: 0

Author

David Ulgenes, Aug 09 2025

Keywords

Comments

T(n, k) is the denominator of the k-th coefficient in a degree n polynomial approximation to Gamma(x+1) with rational coefficients.
That is, Gamma(x+1) ~ Sum_{j=0..n} A386678(n, j) * x^j / A386679(n, j) which is exact as lim_{n->oo}.

Examples

			Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -denominator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1296. Doing this for each row yields the full table:
  1;
  1, 0;
  1, -1/4, 5/16;
  1, -17/36, 1045/1296, -35801/46656;
  1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136; ...
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]

Formula

Let A(n, k) be the triangle of coefficients A386675(n, k)/A386676(n, k) (see example).
Then T(0, 0) = 1, and for n>=1, T(n, k) = -denominator(Sum_{j=1..k} A(n, j) * T(n, k-j)). This follows immediately from the Cauchy product applied to (1/f(x)) * f(x) = 1.
T(n, k) is also the denominator of the k-th coefficient in the Taylor series of 1/(Sum_{j=0..n} A(n, j) * x^j).
Equivalently, T(n, k) is the denominator of the k-th coefficient in the polynomial division 1/(Sum_{j=0..n} A(n, j) * x^j).

A386676 Triangle of denominators for rational convergents to Taylor series of 1/Gamma(x+1).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 36, 12, 9, 1, 288, 192, 288, 192, 1, 7200, 576, 1440, 2880, 1800, 1, 5400, 51840, 11520, 103680, 172800, 103680, 1, 264600, 259200, 1209600, 103680, 44800, 3628800, 2116800, 1, 33868800, 58060800, 58060800, 3686400, 29030400, 4300800, 406425600, 232243200
Offset: 0

Author

David Ulgenes, Jul 28 2025

Keywords

Comments

T(n, k) is the denominator of the k-th coefficient in a degree n polynomial approximation to 1/Gamma(x+1) with rational coefficients.
That is, 1/Gamma(x+1) ~ Sum_{j=0..n} A386675(n, j) * x^j / A386676(n, j) which is exact as lim_{n->oo}.

Examples

			The full triangle is
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
  ...
Thus, for example, a degree 3 approximation is 1/Gamma(x+1) ~ 1 + 17/36x - 7/12x^2 + 1/9x^3. Therefore, T(3, 1) = 36, T(3, 2) = 12, etc.
		

Crossrefs

Cf. A386675.

Programs

  • Mathematica
    T[n_, k_] := Denominator[Sum[(-1)^j * StirlingS1[j, k] * LaguerreL[j, 1] / j!,{j, 0, n}]]
    maxN = 10;
    Table[T[n, k], {n, 0, maxN}, {k, 0, n}]
  • PARI
    T(n, k) = denominator( sum(j=0, n, (-1)^j * stirling(j, k, 1) * pollaguerre(j,,1)/j!)); \\ Michel Marcus, Aug 02 2025

Formula

T(n, k) = denominator( Sum_{j=0..n} (-1)^j * Stirling1(j, k) * Lag(j, 1)/j! ) where Lag(n, x) is the Laguerre polynomial. Proof: Apply Newton's Forward Difference Formula to f(n) = 1/n!. Use the identity x * (x-1) * ... * (x - n + 1) = Sum_{k=0..n} Stirling1(n, k) * x^k and interchange the order of summation.

A386675 Triangle of numerators for rational convergents to Taylor series of 1/Gamma(x+1).

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 17, -7, 1, 1, 181, -167, 77, -5, 1, 5197, -613, 581, -187, 7, 1, 4129, -60239, 5573, -9877, 1597, -37, 1, 203851, -304867, 600941, -10489, 477, -1907, 17, 1, 25440983, -65392379, 25933147, -277639, 91781, 3029, -40199, 887, 1, 655434541, -3777574277, 11384809949, -12459371, -12541363, 531383, -6199573, 505481, -281
Offset: 0

Author

David Ulgenes, Jul 28 2025

Keywords

Comments

T(n, k) is the numerator of the k-th coefficient in a degree n polynomial approximation to 1/Gamma(x+1) with rational coefficients.
That is, 1/Gamma(x+1) ~ Sum_{j=0..n} A386675(n, j) * x^j / A386676(n, j) which is exact as lim_{n->oo}.

Examples

			The full triangle is
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
  ...
Thus, for example, a degree 3 approximation is 1/Gamma(x+1) ~ 1 + 17/36x - 7/12x^2 + 1/9x^3. Therefore, T(3, 1) = 17, T(3, 2) = -7, etc.
		

Crossrefs

Cf. A386676.

Programs

  • Mathematica
    T[n_, k_] := Numerator[Sum[(-1)^j * StirlingS1[j, k] * LaguerreL[j, 1] / j!,{j, 0, n}]]
    maxN = 10;
    Table[T[n, k], {n, 0, maxN}, {k, 0, n}]
  • PARI
    T(n, k) = numerator( sum(j=0, n, (-1)^j * stirling(j, k, 1) * pollaguerre(j,,1)/j!)); \\ Michel Marcus, Aug 02 2025

Formula

T(n, k) = numerator( Sum_{j=0..n} (-1)^j * Stirling1(j, k) * Lag(j, 1)/j! ) where Lag(n, x) is the Laguerre polynomial. Proof: Apply Newton's Forward Difference Formula to f(n) = 1/n!. Use the identity x * (x-1) * ... * (x - n + 1) = Sum_{k=0..n} Stirling1(n, k) * x^k and interchange the order of summation.

A386677 Triangle of numerators for rational convergents to Taylor series of 1/Gamma(x+1) (not in lowest terms).

Original entry on oeis.org

1, 1, 0, 4, 1, -1, 36, 17, -21, 4, 576, 362, -501, 154, -15, 14400, 10394, -15325, 5810, -935, 56, 518400, 396384, -602390, 250785, -49385, 4791, -185, 25401600, 19569696, -29876966, 12619761, -2569805, 270459, -13349, 204, 1625702400, 1221167184, -1830986612, 726128116, -122438799, 5139736, 1144962
Offset: 0

Author

David Ulgenes, Jul 29 2025

Keywords

Comments

T(n, k) is the unsimplified (i.e., not in lowest terms) numerator of the k-th coefficient in a degree n polynomial approximation to 1/Gamma(x+1) with rational coefficients.
That is, T(n, k) is the unsimplified version of A386675.
The unsimplified denominators equal (n!)^2 = A001044(n).
Therefore, we have 1/Gamma(x+1) ~ Sum_{j=0..n} A386676(n, j) * x^j / A001044(n) which is exact as lim_{n->oo}.

Examples

			The simplified triangle of coefficients (A386675) is
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680; ...
These coefficients are obtained using Sum_{j=0..n} (-1)^j * Stirling1(j, k) * Lag(j, 1)/j!. Since Lag(n, x) is in general non-integral, we can write Sum_{j=0..n} (-1)^j * Stirling1(j, k) * numerator(Lag(j, 1))/(j! * denominator(Lag(j, 1))).
Empirically we have LCM(j! * denominator(Lag(j, 1)), {j=0..n}) = (n!)^2. Rescaling so that A001044(n)=(n!)^2 is the denominator of the n-th row gives the following table of coefficients:
  1/1;
  1/1, 0/1;
  4/4, 1/4, -1/4;
  36/36, 17/36, -21/36, 4/36;
  576/576, 362/576, -501/576, 154/576, -15/576;
  14400/14400, 10394/14400, -15325/14400, 5810/14400, -935/14400, 56/14400; ...
Thus for example 36/36 + 17/36x -21/36x^2 + 4/36x^3 is a degree 3 approximation to 1/Gamma(x+1). Therefore, T(3, 1) = 17, T(3, 2) = -21, etc.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Numerator[(n!)^2*Sum[(-1)^j * StirlingS1[j, k] * LaguerreL[j, 1] / j!,{j, 0, n}]]
    maxN = 10;
    Table[T[n, k], {n, 0, maxN}, {k, 0, n}]

Formula

T(n, k) = numerator( (n!)^2 * Sum_{j=0..n} (-1)^j * Stirling1(j, k) * Lag(j, 1)/j! ) where Lag is the Laguerre L polynomials.

A365797 Decimal expansion of smallest positive number x such that Gamma(x) = 2.

Original entry on oeis.org

4, 4, 2, 8, 7, 7, 3, 9, 6, 4, 8, 4, 7, 2, 7, 4, 3, 7, 4, 5, 2, 0, 3, 2, 5, 1, 6, 5, 2, 0, 6, 0, 5, 6, 7, 1, 7, 1, 0, 3, 6, 4, 5, 3, 8, 0, 6, 6, 3, 6, 6, 4, 0, 2, 9, 9, 1, 2, 3, 0, 7, 1, 9, 8, 9, 5, 8, 5, 2, 4, 8, 2, 2, 8, 4, 1, 7, 4, 0, 8, 0, 4, 0, 7, 7, 0, 0, 9, 3, 7, 7, 2, 9, 8, 4, 4, 8, 2, 2, 1, 0, 8, 3, 6, 3, 4
Offset: 0

Author

David Ulgenes, Sep 19 2023

Keywords

Comments

Second branch (i.e., the first after the principal branch) of the inverse gamma function Gamma(y) = x at x=2. See for instance Uchiyama.
Since 1 - x = 0.55712260351... (approximately equal to A249649), we can obtain the interesting approximation Gamma(zeta(2) - zeta(3)) ≈ 2.000001... - David Ulgenes, Feb 19 2024
x is the least positive real number where 1+Gamma(1+Gamma(1+Gamma...(x)...)) converges; it converges to 3. - Colin Linzer, Nov 25 2024

Examples

			0.4428773964847274374520325165206056717103645380663664...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    with(RootFinding):
    NextZero(x -> (x - 1)! - 2, 0);
  • Mathematica
    FindRoot[-2 + (-1 + x)! == 0, {x, 0, 1}, WorkingPrecision -> 15]
  • PARI
    solve(x=0.1, 1, gamma(x)-2) \\ Michel Marcus, Sep 19 2023

Formula

Equals ((((1/2)!/2)!/2)!/2)!/2...
Proof: Since y = y! / x we substitute the expression into itself to obtain an iterative scheme for the inverse gamma function.
Equals (1/(2*Pi))*Integral_{x=-oo..oo} log((2-Gamma(i*x))/(2-Gamma(1+i*x))) dx. Proof: Follows from writing the inverse gamma function using the Lagrange inversion theorem together with Cauchy's formula for differentiation. - David Ulgenes, Feb 11 2024