A386675
Triangle of numerators for rational convergents to Taylor series of 1/Gamma(x+1).
Original entry on oeis.org
1, 1, 0, 1, 1, -1, 1, 17, -7, 1, 1, 181, -167, 77, -5, 1, 5197, -613, 581, -187, 7, 1, 4129, -60239, 5573, -9877, 1597, -37, 1, 203851, -304867, 600941, -10489, 477, -1907, 17, 1, 25440983, -65392379, 25933147, -277639, 91781, 3029, -40199, 887, 1, 655434541, -3777574277, 11384809949, -12459371, -12541363, 531383, -6199573, 505481, -281
Offset: 0
The full triangle is
1;
1, 0;
1, 1/4, -1/4;
1, 17/36, -7/12, 1/9;
1, 181/288, -167/192, 77/288, -5/192;
1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
...
Thus, for example, a degree 3 approximation is 1/Gamma(x+1) ~ 1 + 17/36x - 7/12x^2 + 1/9x^3. Therefore, T(3, 1) = 17, T(3, 2) = -7, etc.
-
T[n_, k_] := Numerator[Sum[(-1)^j * StirlingS1[j, k] * LaguerreL[j, 1] / j!,{j, 0, n}]]
maxN = 10;
Table[T[n, k], {n, 0, maxN}, {k, 0, n}]
-
T(n, k) = numerator( sum(j=0, n, (-1)^j * stirling(j, k, 1) * pollaguerre(j,,1)/j!)); \\ Michel Marcus, Aug 02 2025
A386677
Triangle of numerators for rational convergents to Taylor series of 1/Gamma(x+1) (not in lowest terms).
Original entry on oeis.org
1, 1, 0, 4, 1, -1, 36, 17, -21, 4, 576, 362, -501, 154, -15, 14400, 10394, -15325, 5810, -935, 56, 518400, 396384, -602390, 250785, -49385, 4791, -185, 25401600, 19569696, -29876966, 12619761, -2569805, 270459, -13349, 204, 1625702400, 1221167184, -1830986612, 726128116, -122438799, 5139736, 1144962
Offset: 0
The simplified triangle of coefficients (A386675) is
1;
1, 0;
1, 1/4, -1/4;
1, 17/36, -7/12, 1/9;
1, 181/288, -167/192, 77/288, -5/192;
1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680; ...
These coefficients are obtained using Sum_{j=0..n} (-1)^j * Stirling1(j, k) * Lag(j, 1)/j!. Since Lag(n, x) is in general non-integral, we can write Sum_{j=0..n} (-1)^j * Stirling1(j, k) * numerator(Lag(j, 1))/(j! * denominator(Lag(j, 1))).
Empirically we have LCM(j! * denominator(Lag(j, 1)), {j=0..n}) = (n!)^2. Rescaling so that A001044(n)=(n!)^2 is the denominator of the n-th row gives the following table of coefficients:
1/1;
1/1, 0/1;
4/4, 1/4, -1/4;
36/36, 17/36, -21/36, 4/36;
576/576, 362/576, -501/576, 154/576, -15/576;
14400/14400, 10394/14400, -15325/14400, 5810/14400, -935/14400, 56/14400; ...
Thus for example 36/36 + 17/36x -21/36x^2 + 4/36x^3 is a degree 3 approximation to 1/Gamma(x+1). Therefore, T(3, 1) = 17, T(3, 2) = -21, etc.
-
T[n_, k_] := Numerator[(n!)^2*Sum[(-1)^j * StirlingS1[j, k] * LaguerreL[j, 1] / j!,{j, 0, n}]]
maxN = 10;
Table[T[n, k], {n, 0, maxN}, {k, 0, n}]
A386678
Triangle of numerators for rational convergents to Taylor series of Gamma(x+1).
Original entry on oeis.org
1, 1, 0, 1, -1, 5, 1, -17, 1045, -35801, 1, -181, 104905, -38432557, 15859708705, 1, -5197, 82178809, -864396960373, 9983212589988481, -112929359515545345757, 1, -4129, 101866157, -213193733657, 15527707142596399, -138932602159504972471, 2493923095641600267646643, 1
Offset: 0
Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
1;
1, 0;
1, 1/4, -1/4;
1, 17/36, -7/12, 1/9;
1, 181/288, -167/192, 77/288, -5/192;
1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -numerator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1045. Doing this for each row yields the full table
1;
1, 0;
1, -1/4, 5/16;
1, -17/36, 1045/1296, -35801/46656;
1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136;
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
-
Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]
A386679
Triangle of denominators for rational convergents to Taylor series of Gamma(x+1).
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 1, 36, 1296, 46656, 1, 288, 82944, 23887872, 6879707136, 1, 7200, 51840000, 373248000000, 2687385600000000, 19349176320000000000, 1, 5400, 58320000, 78732000000, 3401222400000000, 18366600960000000000, 198359290368000000000000, 1, 264600, 140026320000, 9262741068000000, 19607370292742400000000
Offset: 0
Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
1;
1, 0;
1, 1/4, -1/4;
1, 17/36, -7/12, 1/9;
1, 181/288, -167/192, 77/288, -5/192;
1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -denominator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1296. Doing this for each row yields the full table:
1;
1, 0;
1, -1/4, 5/16;
1, -17/36, 1045/1296, -35801/46656;
1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136; ...
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
-
Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]
Showing 1-4 of 4 results.
Comments