cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mohammad K. Azarian

Mohammad K. Azarian's wiki page.

Mohammad K. Azarian has authored 1017 sequences. Here are the ten most recent ones:

A347034 Triangle read by columns: T(n,k) is the number of functions from an n-element set to a k-element set that are not one-to-one, k>=n>=1.

Original entry on oeis.org

0, 0, 2, 0, 3, 21, 0, 4, 40, 232, 0, 5, 65, 505, 3005, 0, 6, 96, 936, 7056, 45936, 0, 7, 133, 1561, 14287, 112609, 818503, 0, 8, 176, 2416, 26048, 241984, 2056832, 16736896, 0, 9, 225, 3537, 43929, 470961, 4601529, 42683841, 387057609, 0, 10, 280, 4960, 69760, 848800
Offset: 1

Author

Mohammad K. Azarian, Aug 28 2021

Keywords

Comments

The formula for this sequence is Theorem 2.2(iv) of the author's paper, p. 131 (see the link).

Examples

			For T(2,3): the number of functions is 3^2 and the number of one-to-one functions is 6, so 3^2 - 6 = 3 and thus T(2,3) = 3.
Triangle T(n,k) begins:
       k=1  k=2   k=3   k=4    k=5     k=6
  n=1:  0    0    0     0      0       0
  n=2:       2    3     4      5       6
  n=3:            21    40     65      96
  n=4:                  232    505     936
  n=5:                         3005    7056
  n=6:                                 45936
		

Programs

  • Maple
    A347034 := proc(n,k)
        k^n-k!/(k-n)! ;
    end proc:
    seq(seq(A347034(n,k),n=1..k),k=1..12) ; # R. J. Mathar, Jan 12 2023
  • Mathematica
    Table[k^n - k!/(k - n)!, {k, 12}, {n, k}] // Flatten
  • PARI
    T(n,k) = k^n - k!/(k - n)!;
    row(k) = vector(k, i, T(i, k)); \\ Michel Marcus, Oct 01 2021

Formula

T(n,k) = k^n - k!/(k - n)!, k>=n.
T(n,n) = A036679(n).

A344118 Triangle of numbers T(n,k) = floor((A089072(n,k)-A019538(n,k))/A019538(n,k)) read by rows, n>=1, 1<=k<=n.

Original entry on oeis.org

0, 0, 1, 0, 0, 3, 0, 0, 1, 9, 0, 0, 0, 3, 25, 0, 0, 0, 1, 7, 63, 0, 0, 0, 0, 3, 17, 162, 0, 0, 0, 0, 2, 7, 39, 415, 0, 0, 0, 0, 1, 4, 16, 91, 1066, 0, 0, 0, 0, 0, 2, 8, 34, 212, 2754, 0, 0, 0, 0, 0, 1, 5, 16, 73, 500, 7146, 0, 0, 0, 0, 0, 1, 3, 9, 33, 160, 1190, 18612, 0
Offset: 1

Author

Mohammad K. Azarian, Jul 28 2021

Keywords

Examples

			T(3, 3) = floor((27-6)/6) = 3.
Triangle begins:
  0
  0    1
  0    0    3
  0    0    1    9
  0    0    0    3    25
  0    0    0    1    7    63
  0    0    0    0    3    17    162
		

Crossrefs

Programs

  • Mathematica
    Floor[Table[(k^n - k!*StirlingS2[n, k])/(k!*StirlingS2[n, k]), {n, 15}, {k, n}]] // Flatten

Formula

T(n, k) = floor((k^n - k!*Stirling2(n, k))/(k!*Stirling2(n, k))).

A344115 Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not one-to-one functions.

Original entry on oeis.org

1, 2, 14, 5, 58, 506, 12, 244, 4072, 65512, 27, 1004, 32708, 1048456, 33554312, 58, 4066, 262024, 16776856, 1073741104, 68719476016, 121, 16342, 2096942, 268434616, 34359735848, 4398046506064, 562949953416272, 248, 65480, 16776880, 4294965616, 1099511621056
Offset: 1

Author

Mohammad K. Azarian, Jun 06 2021

Keywords

Comments

If n=k, then T(n,k) = 2^(n^2) - n!, which is A344114, and if kA344110.

Examples

			For T(2,2): the number of relations is 2^4 and the number of one-to-one functions is 2, so 2^4 - 2 = 14 and thus T(2,2) = 14.
Triangle T(n,k) begins:
   1;
   2,   14;
   5,   58,   506;
  12,  244,  4072,   65512;
  27, 1004, 32708, 1048456, 33554312;
		

Programs

  • Mathematica
    Table[2^(n*k) - k!/(k - n)!, {k, 10}, {n, k}] // Flatten

Formula

T(n,k) = 2^(n*k) - k!/(k-n)!, k >= n.

A344116 Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not onto functions.

Original entry on oeis.org

1, 3, 14, 7, 58, 506, 15, 242, 4060, 65512, 31, 994, 32618, 1048336, 33554312, 63, 4034, 261604, 16775656, 1073740024, 68719476016, 127, 16258, 2095346, 268427056, 34359721568, 4398046495984, 562949953416272, 255, 65282, 16771420, 4294926472, 1099511501776, 281474976519136, 72057594037786816, 18446744073709511296
Offset: 1

Author

Mohammad K. Azarian, Jun 07 2021

Keywords

Examples

			For T(2,2), the number of relations is 2^4 and the number of onto functions is 2, so 2^4 - 2 = 14.
Triangle T(n,k) begins:
   1
   3     14
   7     58      506
  15    242     4060      65512
  31    994    32618    1048336    33554312
		

Programs

  • Mathematica
    TableForm[Table[2^(n*k) - Sum[Binomial[k, k - i] (k - i)^n*(-1)^i, {i, 0, k}], {n, 5}, {k, n}]]
  • PARI
    T(n,k) = 2^(n*k) - k!*stirling(n, k, 2); \\ Michel Marcus, Jun 26 2021

Formula

T(n,k) = 2^(n*k) - k!*Stirling2(n,k).
T(n,k) = A344110(n,k) - A131689(n,k).

A344114 a(n) = 2^(n^2) - n!.

Original entry on oeis.org

1, 14, 506, 65512, 33554312, 68719476016, 562949953416272, 18446744073709511296, 2417851639229258349049472, 1267650600228229401496699576576, 2658455991569831745807614120520772352, 22300745198530623141535718272648361026978816, 748288838313422294120286634350736906063831234982912
Offset: 1

Author

Mohammad K. Azarian, Jun 04 2021

Keywords

Comments

a(n) is the number of relations on a set with n elements that are not one-to-one functions.

Examples

			a(1) = 2^(1^2) - 1! =   1;
a(2) = 2^(2^2) - 2! =  14;
a(3) = 2^(3^2) - 3! = 506.
		

Programs

  • Mathematica
    Table[2^(n^2) - n!, {n, 16}] // Flatten

A344113 a(n) = 2^(n^2) - n^n.

Original entry on oeis.org

1, 12, 485, 65280, 33551307, 68719430080, 562949952597769, 18446744073692774400, 2417851639229257961991863, 1267650600228229401486703205376, 2658455991569831745807613835249018541, 22300745198530623141535718272639445405532160
Offset: 1

Author

Mohammad K. Azarian, May 14 2021

Keywords

Comments

a(n) is the number of relations on a set with n elements that are not functions.

Examples

			a(1) = 2^(1^2) - 1^1 = 1.
a(2) = 2^(2^2) - 2^2 = 12.
a(3) = 2^(3^2) - 3^3 = 485.
		

Programs

  • Mathematica
    Table[2^(n^2) - n^n, {n, 12}] // Flatten

A344112 Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not functions.

Original entry on oeis.org

1, 3, 12, 7, 56, 485, 15, 240, 4015, 65280, 31, 992, 32525, 1047552, 33551307, 63, 4032, 261415, 16773120, 1073726199, 68719430080, 127, 16256, 2094965, 268419072, 34359660243, 4398046231168, 562949952597769, 255, 65280, 16770655, 4294901760, 1099511237151
Offset: 1

Author

Mohammad K. Azarian, May 10 2021

Keywords

Examples

			T(2,2) = (number of relations) - (number of functions) = 2^4 - 4 = 12.
Triangle T(n,k) begins:
   1;
   3,  12;
   7,  56,   485;
  15, 240,  4015,   65280;
  31, 992, 32525, 1047552, 33551307;
		

Crossrefs

Programs

  • Mathematica
    Column[Table[2^(n*k) - k^n, {n, 10}, {k, n}], Center]

Formula

T(n,k) = 2^(n*k) - k^n, n,k >= 1.

A344110 Triangle read by rows: T(n,k) = 2^(n*k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 1, 8, 64, 512, 1, 16, 256, 4096, 65536, 1, 32, 1024, 32768, 1048576, 33554432, 1, 64, 4096, 262144, 16777216, 1073741824, 68719476736, 1, 128, 16384, 2097152, 268435456, 34359738368, 4398046511104, 562949953421312
Offset: 0

Author

Mohammad K. Azarian, May 10 2021

Keywords

Comments

T(n, k) is the number of relations from an n-element set into a k-element set, n >= 0, 0 <= k <= n.
T(n,k) is the size of the right principal ideal generated by A where A is an n X n matrix over GF(2) having rank k. The right principal ideal of A contains precisely the matrices whose image is contained in the image of A. - Geoffrey Critzer, Sep 25 2022

Examples

			T(3,3) = number of relations from a 3-element set into a 3-element set=2^(3*3)=512.
Triangle begins:
   1
   1   2
   1   4      16
   1   8      64      512
   1  16     256     4096      65536
   1  32    1024    32768    1048576    33554432
   ...
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n*k), {n, 0, 10}, {k, 0, n}]

Formula

T(n,k) = 2^(n*k).
T(n,k) = Sum_{j=0..k} A288853(n,j)*A022166(n,j). - Geoffrey Critzer, Jan 02 2023

A280190 Base-60 (Babylonian or sexagesimal) expansion of sine of 3 degrees.

Original entry on oeis.org

3, 8, 24, 33, 59, 34, 28, 14, 50, 5, 28, 29, 38, 47, 51, 57, 24, 25, 56, 50, 24, 30, 4, 12, 1, 50, 22, 37, 14, 19, 57, 37, 6, 18, 54, 32, 55, 20, 41, 45, 16, 27, 55, 52, 52, 7, 9, 20, 25, 8, 58, 18, 22, 58, 32, 34, 3, 2, 15, 27, 36, 33, 23, 19, 12, 48, 0, 33, 42, 3, 6, 1, 37, 1, 19, 21, 55, 46, 56
Offset: 1

Author

Mohammad K. Azarian, Jan 14 2017

Keywords

Comments

The Fifteenth Century Persian mathematician Jamshid Al-Kashi was the first to calculate the value of sine of one degree correct to ten sexagesimal places (17 decimal digits) from sine of 3 degrees in his Risala al-Watar wa'l Jaib.

Programs

  • Mathematica
    RealDigits[Sin[3 Degrees], 60, 200][[1]]

A280189 Version of sexagesimal expansion of sine of one degree given by the Persian mathematician Al-Kashi in the 15th Century.

Original entry on oeis.org

1, 2, 49, 43, 11, 14, 44, 16, 26, 17
Offset: 1

Author

Mohammad K. Azarian, Dec 28 2016

Comments

The fifteenth century Persian mathematician Jamshid Al-Kashi was the first to calculate the value of sine of one degree correct to ten sexagesimal places (17 decimal digits) in his Risala al-Watar wa'l Jaib.

Crossrefs