A344116 Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not onto functions.
1, 3, 14, 7, 58, 506, 15, 242, 4060, 65512, 31, 994, 32618, 1048336, 33554312, 63, 4034, 261604, 16775656, 1073740024, 68719476016, 127, 16258, 2095346, 268427056, 34359721568, 4398046495984, 562949953416272, 255, 65282, 16771420, 4294926472, 1099511501776, 281474976519136, 72057594037786816, 18446744073709511296
Offset: 1
Examples
For T(2,2), the number of relations is 2^4 and the number of onto functions is 2, so 2^4 - 2 = 14. Triangle T(n,k) begins: 1 3 14 7 58 506 15 242 4060 65512 31 994 32618 1048336 33554312
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1275 (rows n = 1..50, flattened)
- Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141.
Crossrefs
Programs
-
Mathematica
TableForm[Table[2^(n*k) - Sum[Binomial[k, k - i] (k - i)^n*(-1)^i, {i, 0, k}], {n, 5}, {k, n}]]
-
PARI
T(n,k) = 2^(n*k) - k!*stirling(n, k, 2); \\ Michel Marcus, Jun 26 2021
Comments