cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A010503 Decimal expansion of 1/sqrt(2).

Original entry on oeis.org

7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
Offset: 0

Views

Author

Keywords

Comments

The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Positive zero of the Hermite polynomial of degree 2. - A.H.M. Smeets, Jun 02 2025

Examples

			0.7071067811865475...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).

Programs

  • Magma
    1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
  • Maple
    Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    N[ 1/Sqrt[2], 200]
    RealDigits[1/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
    

Formula

1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024

Extensions

More terms from Harry J. Smith, Jun 02 2009

A073226 Decimal expansion of e^e.

Original entry on oeis.org

1, 5, 1, 5, 4, 2, 6, 2, 2, 4, 1, 4, 7, 9, 2, 6, 4, 1, 8, 9, 7, 6, 0, 4, 3, 0, 2, 7, 2, 6, 2, 9, 9, 1, 1, 9, 0, 5, 5, 2, 8, 5, 4, 8, 5, 3, 6, 8, 5, 6, 1, 3, 9, 7, 6, 9, 1, 4, 0, 7, 4, 6, 4, 0, 5, 9, 1, 4, 8, 3, 0, 9, 7, 3, 7, 3, 0, 9, 3, 4, 4, 3, 2, 6, 0, 8, 4, 5, 6, 9, 6, 8, 3, 5, 7, 8, 7, 3, 4, 6, 0, 5, 1, 1, 5
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

Given z > 0, there exist positive real numbers x < y, with x^y = y^x = z, if and only if z > e^e. In that case, 1 < x < e < y and (x, y) = ((1 + 1/t)^t, (1 + 1/t)^(t+1)) for some t > 0. (For example, t = 1 gives 2^4 = 4^2 = 16 > e^e.) Proofs of these classical results and applications of them are in Marques and Sondow (2010).
e^e = lim_{n->infinity} ((n+1)/n)^((n+1)^(n+1)/n^n), n > 0 an integer; cf. [Vernescu] wherein it is also stated that the assertions of the previous comment above were proved by Alexandru Lupas in 2006. - L. Edson Jeffery, Sep 18 2012
A weak form of Schanuel's Conjecture implies that e^e is transcendental--see Marques and Sondow (2012).

Examples

			15.15426224147926418976043027262991190552854853685613976914...
		

Crossrefs

Cf. A073233 (Pi^Pi), A049006 (i^i), A001113 (e), A073227 (e^e^e), A004002 (Benford numbers), A056072 (floor(e^e^...^e), n e's), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073229 (e^(1/e)), A073230 ((1/e)^e).

Programs

  • Magma
    Exp(Exp(1)); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[ E^E, 10, 110] [[1]]
  • PARI
    exp(exp(1))
    
  • PARI
    { default(realprecision, 20080); x=exp(1)^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073226.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} e^n/n!. - Richard R. Forberg, Dec 29 2013
Equals Product_{n>=0} e^(1/n!). - Amiram Eldar, Jun 29 2020

A073229 Decimal expansion of e^(1/e).

Original entry on oeis.org

1, 4, 4, 4, 6, 6, 7, 8, 6, 1, 0, 0, 9, 7, 6, 6, 1, 3, 3, 6, 5, 8, 3, 3, 9, 1, 0, 8, 5, 9, 6, 4, 3, 0, 2, 2, 3, 0, 5, 8, 5, 9, 5, 4, 5, 3, 2, 4, 2, 2, 5, 3, 1, 6, 5, 8, 2, 0, 5, 2, 2, 6, 6, 4, 3, 0, 3, 8, 5, 4, 9, 3, 7, 7, 1, 8, 6, 1, 4, 5, 0, 5, 5, 7, 3, 5, 8, 2, 9, 2, 3, 0, 4, 7, 0, 9, 8, 8, 5, 1, 1, 4, 2, 9, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

e^(1/e) = 1/((1/e)^(1/e)) (reciprocal of A072364).
Let w(n+1)=A^w(n); then w(n) converges if and only if (1/e)^e <= A <= e^(1/e) (see the comments in A073230) for initial value w(1)=A. If A=e^(1/e) then lim_{n->infinity} w(n) = e. - Benoit Cloitre, Aug 06 2002; corrected by Robert FERREOL, Jun 12 2015
x^(1/x) is maximum for x = e and the maximum value is e^(1/e). This gives an interesting and direct proof that 2 < e < 4 as 2^(1/2) < e^(1/e) > 4^(1/4) while 2^(1/2) = 4^(1/4). - Amarnath Murthy, Nov 26 2002
For large n, A234604(n)/A234604(n-1) converges to e^(1/e). - Richard R. Forberg, Dec 28 2013
Value of the unique base b > 0 for which the exponential curve y=b^x and its inverse y=log_b(x) kiss each other; the kissing point is (e,e). - Stanislav Sykora, May 25 2015
Actually, there is another base with such property, b=(1/e)^e with kiss point (1/e,1/e). - Yuval Paz, Dec 29 2018
The problem of finding the maximum of f(x) = x^(1/x) was posed and solved by the Swiss mathematician Jakob Steiner (1796-1863) in 1850. - Amiram Eldar, Jun 17 2021

Examples

			1.44466786100976613365833910859...
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 35.

Crossrefs

Cf. A001113 (e), A068985 (1/e), A073230 ((1/e)^e), A072364 ((1/e)^(1/e)), A073226 (e^e).

Programs

  • Maple
    evalf[110](exp(exp(-1))); # Muniru A Asiru, Dec 29 2018
  • Mathematica
    RealDigits[ E^(1/E), 10, 110] [[1]]
  • PARI
    exp(1)^exp(-1)

Formula

Equals 1 + Integral_{x = 1/e..1} (1 + log(x))/x^x dx = 1 - Integral_{x = 0..1/e} (1 + log(x))/x^x dx. - Peter Bala, Oct 30 2019
Equals Sum_{k>=0} exp(-k)/k!. - Amiram Eldar, Aug 13 2020
Equals lim_{x->oo} (Sum_{n>=1} (x/n)^n)^(1/x) (Furdui, 2017). - Amiram Eldar, Mar 26 2022

A083648 Decimal expansion of Sum_{n>=1} -(-1)^n/n^n = Integral_{x=0..1} x^x dx.

Original entry on oeis.org

7, 8, 3, 4, 3, 0, 5, 1, 0, 7, 1, 2, 1, 3, 4, 4, 0, 7, 0, 5, 9, 2, 6, 4, 3, 8, 6, 5, 2, 6, 9, 7, 5, 4, 6, 9, 4, 0, 7, 6, 8, 1, 9, 9, 0, 1, 4, 6, 9, 3, 0, 9, 5, 8, 2, 5, 5, 4, 1, 7, 8, 2, 2, 7, 0, 1, 6, 0, 0, 1, 8, 4, 5, 8, 9, 1, 4, 0, 4, 4, 5, 6, 2, 4, 8, 6, 4, 2, 0, 4, 9, 7, 2, 2, 6, 8, 9, 3, 8, 9, 7, 4, 8, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, May 01 2003

Keywords

Comments

In 1697, Johann Bernoulli explores this curve and finds its minimum and the area under the curve from 0 to 1, all this without the benefit of the exponential function.

Examples

			0.78343051071213440705926438652697546940768199014693095825541782270...
		

References

  • William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton, NJ 2005, pp. 46-51.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.
  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton, New Jersey: Princeton University Press (1988), p. 146.

Crossrefs

Cf. A137420 (continued fraction expansion).
Cf. A073009. The minimum point on the curve x^x is (A068985, A072364).

Programs

  • Mathematica
    RealDigits[ Sum[ -(-1)^n /n^n, {n, 1, 60}], 10, 111] [[1]] (* Robert G. Wilson v, Jan 31 2005 *)
  • PARI
    -sumalt(n=1, (-1/n)^(n)) \\ Michel Marcus, Oct 15 2015
    
  • Sage
    numerical_approx(-sum((-1/n)^n for n in (1..120)), digits=130) # G. C. Greubel, Mar 01 2019

Formula

Constant also equals the double integral Integral_{y = 0..1} Integral_{x = 0..1} (x*y)^(x*y) dx dy. - Peter Bala, Mar 04 2012
From Petros Hadjicostas, Jun 29 2020: (Start)
Equals -Integral_{x=0..1, y=0..1} (x*y)^(x*y)/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to Integral_{x=0..1} x^x dx.)
Equals -Integral_{x=0..1} x^x*log(x) dx. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the double integral of Peter Bala above.)
Without using the results in Glasser (2019), notice that Integral x^x*(1 + log(x)) dx = x^x + c, which implies Integral_{x=0..1} x^x dx = -Integral_{x=0..1} x^x*log(x) dx. (End)

A073230 Decimal expansion of (1/e)^e.

Original entry on oeis.org

0, 6, 5, 9, 8, 8, 0, 3, 5, 8, 4, 5, 3, 1, 2, 5, 3, 7, 0, 7, 6, 7, 9, 0, 1, 8, 7, 5, 9, 6, 8, 4, 6, 4, 2, 4, 9, 3, 8, 5, 7, 7, 0, 4, 8, 2, 5, 2, 7, 9, 6, 4, 3, 6, 4, 0, 2, 4, 7, 3, 5, 4, 1, 5, 6, 6, 7, 3, 6, 3, 3, 0, 0, 3, 0, 7, 5, 6, 3, 0, 8, 1, 0, 4, 0, 8, 8, 2, 4, 2, 4, 5, 3, 3, 7, 1, 4, 6, 7, 7, 4, 5, 6, 7
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

(1/e)^e = e^(-e) = 1/(e^e) (reciprocal of A073226).
The power tower function f(x)=x^(x^(x^...)) is defined on the closed interval [e^(-e),e^(1/e)]. - Lekraj Beedassy, Mar 17 2005

Examples

			0.06598803584531253707679018759...
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, Solution to problem 8A (Power Tower) p. 240.

Crossrefs

Cf. A001113 (e), A068985 (1/e), A073229 (e^(1/e)), A072364 ((1/e)^(1/e)), A073226 (e^e).

Programs

A073232 Decimal expansion of ((1/e)^(1/e))^(1/e).

Original entry on oeis.org

8, 7, 3, 4, 2, 3, 0, 1, 8, 4, 9, 3, 1, 1, 6, 6, 4, 2, 9, 8, 9, 0, 3, 2, 3, 4, 8, 6, 6, 2, 5, 3, 8, 2, 0, 5, 2, 6, 2, 5, 4, 0, 9, 7, 8, 5, 8, 3, 3, 5, 9, 6, 7, 5, 0, 5, 6, 2, 1, 9, 4, 2, 1, 4, 8, 0, 1, 4, 3, 1, 6, 3, 8, 3, 1, 5, 1, 5, 0, 1, 8, 7, 4, 5, 1, 1, 7, 0, 9, 6, 3, 2, 5, 5, 2, 4, 6, 7, 1, 3, 2, 9, 2, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			0.87342301849311664298903234866...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), A072364 ((1/e)^(1/e)), A073231 ((1/e)^(1/e)^(1/e)), A073228 ((e^e)^e), A073227 (e^e^e).

Programs

  • Mathematica
    RealDigits[((1/E)^(1/E))^(1/E),10,120][[1]]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    exp(-exp(-2))

Formula

Equals e^(-e^(-2)).

A072365 Decimal expansion of (1/3)^(1/3).

Original entry on oeis.org

6, 9, 3, 3, 6, 1, 2, 7, 4, 3, 5, 0, 6, 3, 4, 7, 0, 4, 8, 4, 3, 3, 5, 2, 2, 7, 4, 7, 8, 5, 9, 6, 1, 7, 9, 5, 4, 4, 5, 9, 3, 5, 1, 1, 3, 4, 5, 7, 7, 5, 4, 0, 3, 6, 5, 6, 5, 8, 6, 3, 6, 9, 3, 4, 0, 0, 0, 3, 5, 4, 3, 7, 1, 3, 2, 4, 2, 2, 9, 2, 4, 5, 3, 5, 3, 5, 2, 2, 1, 2, 2, 6, 3, 5, 8, 5, 8, 2, 8, 9, 0, 9, 5, 5, 7
Offset: 0

Views

Author

Rick L. Shepherd, Jul 18 2002

Keywords

Comments

Minimum value of (1/n)^(1/n) for integer n>0.

Examples

			.693361274350634704843352274785...
		

Crossrefs

Cf. A072364.

Programs

  • Magma
    (1/3)^(1/3); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[Surd[1/3,3],10,120][[1]] (* Harvey P. Dale, Nov 03 2013 *)
  • PARI
    (1/3)^(1/3)
    

A073231 Decimal expansion of (1/e)^(1/e)^(1/e).

Original entry on oeis.org

5, 0, 0, 4, 7, 3, 5, 0, 0, 5, 6, 3, 6, 3, 6, 8, 4, 0, 5, 4, 5, 1, 3, 4, 9, 0, 1, 3, 3, 7, 9, 0, 4, 5, 7, 2, 8, 0, 3, 4, 5, 3, 2, 1, 5, 3, 4, 2, 2, 8, 3, 0, 0, 6, 4, 9, 7, 9, 0, 9, 3, 5, 2, 7, 8, 3, 7, 5, 7, 3, 2, 1, 1, 6, 2, 6, 1, 4, 3, 3, 4, 4, 3, 5, 1, 0, 6, 5, 0, 8, 2, 6, 5, 0, 9, 6, 5, 7, 5, 8, 9, 9, 3, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			0.50047350056363684054513490133...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073232 (((1/e)^(1/e))^(1/e)), A073227 (e^e^e).

Programs

  • Mathematica
    With[{c=1/E},RealDigits[c^c^c,10,120][[1]]] (* Harvey P. Dale, Jul 16 2025 *)
  • PARI
    exp(-1)^exp(-1)^exp(-1)

A332627 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 6, 117, 4388, 266065, 23731314, 2923345621, 475364541672, 98623225721601, 25421365316232710, 7969388199705535141, 2985785305877403047820, 1317500933136749853197329, 676266417871227455138941242, 399516621958550611386236160405
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(-x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 + k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A072364 = exp(-exp(-1)). - Vaclav Kotesovec, Jul 10 2021
E.g.f.: Sum_{k>=0} (k*x*exp(-x))^k. - Seiichi Manyama, Feb 19 2022

A194624 Decimal expansion of the smaller solution to x^x = 3/4.

Original entry on oeis.org

1, 5, 3, 5, 1, 6, 7, 8, 9, 6, 6, 3, 9, 5, 2, 9, 4, 7, 1, 5, 0, 0, 6, 8, 3, 3, 2, 9, 7, 8, 4, 6, 3, 2, 2, 7, 7, 1, 1, 2, 6, 9, 4, 8, 5, 4, 8, 9, 9, 6, 9, 6, 2, 0, 3, 1, 7, 9, 8, 5, 4, 2, 8, 3, 3, 4, 3, 7, 2, 6, 1, 3, 6, 4, 1, 9, 0, 5, 8, 3, 0, 2, 9, 3, 6, 8, 7, 6, 6, 0, 5, 3, 0, 1, 9, 3, 7, 1, 9, 4
Offset: 0

Views

Author

Jonathan Sondow, Sep 02 2011

Keywords

Comments

Since (1/e)^(1/e) < 3/4 < 1, the equation x^x = 3/4 has two solutions x = a and x = b with 0 < a < 1/e < b < 1. Both solutions are transcendental (see Proposition 2.2 in Sondow-Marques 2010).

Examples

			0.15351678966395294715006833297846322771126948548996962031798542833437261364190...
		

Crossrefs

Cf. A030798 (x^x = 2), A072364 ((1/e)^(1/e)), A194625 (larger solution to x^x = 3/4).

Programs

  • Mathematica
    x = x /. FindRoot[x^x == 3/4, {x, 0.1}, WorkingPrecision -> 120]; RealDigits[x, 10, 100] // First
Showing 1-10 of 13 results. Next