A342621 Sum of the partition number of the prime factors of n with multiplicity.
0, 2, 3, 4, 7, 5, 15, 6, 6, 9, 56, 7, 101, 17, 10, 8, 297, 8, 490, 11, 18, 58, 1255, 9, 14, 103, 9, 19, 4565, 12, 6842, 10, 59, 299, 22, 10, 21637, 492, 104, 13, 44583, 20, 63261, 60, 13, 1257, 124754, 11, 30, 16, 300, 105, 329931, 11, 63, 21, 493, 4567, 831820
Offset: 1
Keywords
Examples
For n = 408 = 2^3*3*17, a(408) = 3 * A000041(2) + A000041(3) + A000041(17) = 3*2 + 3 + 297 = 306.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 3000 terms from Eric Desbiaux)
Programs
-
Maple
a:= n-> add(combinat[numbpart](i[1])*i[2], i=ifactors(n)[2]): seq(a(n), n=1..70); # Alois P. Heinz, Mar 17 2021
-
Mathematica
{0}~Join~Array[Total@ Map[#2 PartitionsP[#1] & @@ # &, FactorInteger[#]] &, 58, 2] (* Michael De Vlieger, Mar 17 2021 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,2]*numbpart(f[k,1])); \\ Michel Marcus, Mar 17 2021
-
Sage
def a(n): return sum([Partitions(primefactor).cardinality() for (primefactor,exponent) in factor(n) for _ in range(exponent)]) [a(n) for n in (1..100)]
Comments