cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eric Desbiaux

Eric Desbiaux's wiki page.

Eric Desbiaux has authored 22 sequences. Here are the ten most recent ones:

A342621 Sum of the partition number of the prime factors of n with multiplicity.

Original entry on oeis.org

0, 2, 3, 4, 7, 5, 15, 6, 6, 9, 56, 7, 101, 17, 10, 8, 297, 8, 490, 11, 18, 58, 1255, 9, 14, 103, 9, 19, 4565, 12, 6842, 10, 59, 299, 22, 10, 21637, 492, 104, 13, 44583, 20, 63261, 60, 13, 1257, 124754, 11, 30, 16, 300, 105, 329931, 11, 63, 21, 493, 4567, 831820
Offset: 1

Author

Eric Desbiaux, Mar 16 2021

Keywords

Examples

			For n = 408 = 2^3*3*17, a(408) = 3 * A000041(2) + A000041(3) + A000041(17) = 3*2 + 3 + 297 = 306.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(combinat[numbpart](i[1])*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 17 2021
  • Mathematica
    {0}~Join~Array[Total@ Map[#2 PartitionsP[#1] & @@ # &, FactorInteger[#]] &, 58, 2] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,2]*numbpart(f[k,1])); \\ Michel Marcus, Mar 17 2021
  • Sage
    def a(n):
        return sum([Partitions(primefactor).cardinality() for (primefactor,exponent) in factor(n) for _ in range(exponent)])
    [a(n) for n in (1..100)]
    

Formula

a(A003586(n)) - A001414(A003586(n)) = 0.
a(A006899(n)) * A008480(A006899(n)) - A001414(A006899(n)) = 0.
a(n) = Sum_{k=1..A001222(n)} A000041(A027746(n,k)). - Alois P. Heinz, Apr 09 2021

A276781 a(n) = 1+n-(nearest power of prime <= n); for n > 1, a(n) = minimal b such that the numbers binomial(n,k) for b <= k <= n-b have a common divisor greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2
Offset: 1

Author

N. J. A. Sloane, Sep 29 2016, following a suggestion from Eric Desbiaux

Keywords

Comments

The definition in the video has "b < k < n-b" rather than "b <= k <= n-b", but that appears to be a typographical error.
From Antti Karttunen, Jan 21 2020: (Start)
a(n) = 1 if n is a power of prime (term of A000961), otherwise a(n) is one more than the distance to the nearest preceding prime power.
For n > 1, a(n) indicates the maximum region on the row n of Pascal's triangle (A007318) such that binomial terms C(n,a(n)) .. C(n,n-a(n)) all share a common prime factor. Because for all prime powers, p^k, the binomial terms C(p^k,1) .. C(p^k,p^k-1) have p as their prime factor, we have a(A000961(n)) = 1 for all n, while for each successive n that is not a prime power, the region of shared prime factor shrinks one step more towards the center of the triangle. From this follows that this is the ordinal transform of A025528 (equally, of A065515, or of A003418(n) from n >= 1 onward), equivalent to the simple definition given above.
(End)

Examples

			Row 6 of Pascal's triangle is 1,6,15,20,15,6,1 and [15,20,15] have a common divisor of 5. Since 15 = binomial(6,2), a(6)=2.
		

Crossrefs

Cf. A007318, A010055, A276782 (positions of records), A000961 (positions of ones), A024619 (positions of terms > 1).

Programs

  • Maple
    mygcd:=proc(lis) local i,g,m;
    m:=nops(lis); g:=lis[1];
    for i from 2 to m do g:=gcd(g,lis[i]); od:
    g; end;
    f:=proc(n) local b,lis; global mygcd;
    for b from floor(n/2) by -1 to 1 do
    lis:=[seq(binomial(n,i),i=b..n-b)];
    if mygcd(lis)=1 then break; fi; od:
    b+1;
    end;
    [seq(f(n),n=2..120)];
  • Mathematica
    Table[b = 1; While[GCD @@ Map[Binomial[n, #] &, Range[b, n - b]] == 1, b++]; b, {n, 92}] (* Michael De Vlieger, Oct 03 2016 *)
  • PARI
    A276781(n) = if(1==n,1,forstep(k=n,1,-1,if(isprimepower(k),return(1+n-k)))); \\ Antti Karttunen, Jan 21 2020
    
  • Python
    from sympy import factorint
    def A276781(n): return 1+n-next(filter(lambda m:len(factorint(m))<=1, range(n,0,-1))) # Chai Wah Wu, Oct 25 2024

Formula

If A010055(n) == 1, a(n) = 1, otherwise a(n) = 1 + a(n-1). - Antti Karttunen, Jan 21 2020

Extensions

Term a(1) = 1 prepended and alternative simpler definition added to the name by Antti Karttunen, Jan 20 2020

A188060 Numerator of 8^(2n-1) |B(2n)| / (2n)!, where B() are the Bernoulli numbers.

Original entry on oeis.org

8, 128, 4096, 32768, 1048576, 11593056256, 536870912, 7767448354816, 3014517285978112, 191986824837595136, 2733227576976736256, 66530577009460375453696, 5926115612870995607552, 488951148984934932554973184, 7946710949908368748447692488704, 71105936114697022329949662478336
Offset: 1

Author

Eric Desbiaux, Apr 15 2011

Keywords

Comments

Start with zeta(2n) = (2Pi)^(2n) |B(2n)| /(2 (2n)!) and replace Pi by 4 arctan(1) and take the numerator of the rational part. The denominator is given by A036278.

Examples

			8/3,128/45,4096/945,32768/4725,...
		

Crossrefs

Programs

  • Maple
     f:=n->8^(2*n)*abs(B(2*n))/(2*(2*n)!); [seq(numer(f(n)),n=1..60)];

Extensions

Entry revised by N. J. A. Sloane, Apr 17 2011

A177225 Pairs [x.y],[0.2],[2.0],[2.2]... such that 3*x/2+y is prime.

Original entry on oeis.org

0, 2, 2, 0, 2, 2, 2, 4, 4, 5, 4, 7, 6, 8, 6, 10, 8, 11, 10, 14, 10, 16, 12, 19, 14, 20, 14, 22, 16, 23, 18, 26, 20, 29, 20, 31, 22, 34, 24, 35, 24, 37, 26, 40, 28, 41, 30, 44, 32, 49, 34, 50, 34, 52
Offset: 1

Author

Eric Desbiaux, May 05 2010

Keywords

Crossrefs

A169631 Recamán's sequence (A005132) written in binary.

Original entry on oeis.org

0, 1, 11, 110, 10, 111, 1101, 10100, 1100, 10101, 1011, 10110, 1010, 10111, 1001, 11000, 1000, 11001, 101011, 111110, 101010, 111111, 101001, 10010, 101010, 10001, 101011, 10000, 101100, 1111, 101101, 1110, 101110, 1001111, 1110001
Offset: 0

Author

Eric Desbiaux, Mar 15 2010

Keywords

A169633 The odd terms in Recamán's sequence (A005132).

Original entry on oeis.org

1, 3, 7, 13, 21, 11, 23, 9, 25, 43, 63, 41, 17, 43, 15, 45, 79, 113, 77, 39, 79, 37, 81, 35, 83, 33, 85, 31, 87, 29, 89, 27, 91, 157, 225, 155, 227, 153, 75, 153, 73, 155, 71, 157, 69, 159, 67, 161, 65, 163, 265, 367, 263, 369, 261, 151, 265, 379, 495, 377, 259, 137, 261
Offset: 1

Author

Eric Desbiaux, Mar 15 2010

Keywords

Extensions

More terms from R. J. Mathar, Oct 09 2010

A158942 Nonsquares coprime to 10.

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 77, 79, 83, 87, 89, 91, 93, 97, 99, 101, 103, 107, 109, 111, 113, 117, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 147, 149, 151, 153, 157, 159, 161, 163
Offset: 1

Author

Eric Desbiaux, Mar 31 2009

Keywords

Comments

Odd primes + odd nonprime integers that have an odd numbers of proper divisors A082686, are the result of a suppression of integers satisfying: 2n (A005843); n^2 (A000290); n^2+n (A002378). Of these, we can suppress the multiples of 5 (A008587).
Decimal expansion of 1/10^(n^2+n) + 1/10^(n^2) + 1/10^(5*n) + 1/10^(2*n) gives a 0 for these integers.
2n + n(n+1) + n^2 = 2n^2 + 3n = A014106.
2n^2 + 3n + 5n = 2n^2 + 8n = 2n(n+4) = A067728 8(8+n) is a perfect square.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 163, ! IntegerQ@ Sqrt@ # && CoprimeQ[#, 10] &] (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    isok(n) = (n % 2) && (n % 5) && (isprime(n) || (numdiv(n) % 2 == 0)); \\ Michel Marcus, Aug 27 2013
    
  • PARI
    is(n)=gcd(n,10)==1 && !issquare(n) \\ Charles R Greathouse IV, Sep 05 2013

Extensions

New name from Charles R Greathouse IV, Sep 05 2013

A169632 The even terms in Recamán's sequence (A005132).

Original entry on oeis.org

0, 6, 2, 20, 12, 22, 10, 24, 8, 62, 42, 18, 42, 16, 44, 14, 46, 78, 114, 78, 38, 80, 36, 82, 34, 84, 32, 86, 30, 88, 28, 90, 26, 224, 156, 226, 154, 228, 152, 74, 154, 72, 156, 70, 158, 68, 160, 66, 162, 64, 164, 264, 368, 262, 370, 40, 152, 494, 378, 258, 138, 260
Offset: 1

Author

Eric Desbiaux, Mar 15 2010

Keywords

Crossrefs

Cf. A005132, A169633 (odd).

Formula

a(2*n+b) = A005132(4*n+3+b), for b = {0,1}. - Thomas Scheuerle, Oct 06 2022

Extensions

More terms from R. J. Mathar, Oct 09 2010

A173178 Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2.

Original entry on oeis.org

1, 4, 7, 10, 13, 19, 22, 25, 28, 34, 40, 43, 49, 52, 55, 64, 67, 73, 82, 85, 88, 94, 97, 112, 115, 118, 124, 127, 130, 133, 139, 145, 154, 157, 172, 175, 178, 190, 193, 199, 208, 214, 220, 223, 229, 232, 238, 244, 250, 253, 259, 277, 280, 283, 292, 295, 298, 307, 319
Offset: 1

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 1 + 3 OR 3* 1 + 2 = 5;
2* 4 + 3 OR 3* 3 + 2 = 11;
2* 7 + 3 OR 3* 5 + 2 = 17;
2*10 + 3 OR 3* 7 + 2 = 23;
2*13 + 3 OR 3* 9 + 2 = 29;
2*19 + 3 OR 3*13 + 2 = 41;
2*22 + 3 OR 3*15 + 2 = 47;
2*25 + 3 OR 3*17 + 2 = 53;
2*28 + 3 OR 3*19 + 2 = 59.
A024893 Numbers k such that 3k+2 is prime.
A007528 Primes of the form 6k-1.
A024898 Positive integers k such that 6k-1 is prime.
1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* Amiram Eldar, Jul 30 2024 *)

Formula

a(n) = 3*A059325(n) + 1. - Amiram Eldar, Jul 30 2024

Extensions

Data corrected and extended by Amiram Eldar, Jul 30 2024

A159200 Decimal expansion of Sum_{k >= 1} (1/(10^(4*k + 2) - 1)) - (1/(10^(2*k + 1) - 1)), negated.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 3, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 5, 0, 1, 0, 2, 0, 3, 0, 1, 0, 3, 0, 3, 0, 1, 0, 1, 0, 5, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 5, 0, 3, 0, 1, 0, 4, 0, 1, 0, 3, 0, 3, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1, 0, 5, 0
Offset: 0

Author

Eric Desbiaux, Apr 06 2009

Keywords

Comments

It equals Sum_{k >= 1} 1/((2^(4*k + 2)*5^(4*k + 2)) - 1) - 1/((2^(2*k + 1)*5^(2*k + 1)) - 1).
Note that Sum_{k >= 1} (1/(10^k - 1)) / Sum_{k >= 1} ((1/(10^(4*k + 2) - 1)) -(1/(10^(2*k + 1) - 1))) = A073668 / Sum_{k >= 1} ((1/(10^(4*k + 2) - 1)) - (1/(10^(2*k + 1) - 1))) = -121.100.
My idea for this decimal expansion came from the Engel expansion of e - 1, i.e., A000027(n) = n, and the Engel expansion of e^(-1), i.e., A059193(n) = 2*(2*n + 1)*(n - 1), which I have transformed into (2*n + 1)^2 - (6*n + 3) (since 2*(2*n + 1)*(n - 1) = (2*n + 1)^2 - (6*n + 3)). It appears that the Engel expansion of 1/e works like a Sundaram sieve.
Decimal expansion of Sum_{n>=0} (d(2*n+1) - 1)/(10^(2*n+1) - 1), where d = A000005. - Jianing Song, Apr 12 2021

Examples

			-0.00101010201010301010301020301010303010301010501020301030301...
		

Programs

  • PARI
    suminf(k=1, 1/(10^(4*k + 2) - 1) - 1/(10^(2*k + 1) - 1)) \\ Michel Marcus, Jun 25 2019

Extensions

Comments edited by Petros Hadjicostas, Jun 19 2019