cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A008485 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.

Original entry on oeis.org

1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

Number of partitions of n into parts of n kinds. - Vladeta Jovovic, Sep 08 2002
Main diagonal of A144064. - Omar E. Pol, Jun 27 2012
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p >= 3. Cf. A270913. (End)

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
    Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
    
  • PARI
    {a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */

Formula

a(n) = Sum_{pi} Product_{i=1..n} binomial(k_i+n-1, k_i) where pi runs through all nonnegative solutions of k_1+2*k_2+...+n*k_n=n. a(n) = b(n, n) where b(n, m)= m/n*Sum_{i=1..n} sigma(i)*b(n-i, m) is recurrence for number of partitions of n into parts of m kinds. - Vladeta Jovovic, Sep 08 2002
Equals the logarithmic derivative of A109085, the g.f. of which is (1/x)*Series_Reversion(x*eta(x)). - Paul D. Hanna, Apr 05 2012
Let G(x) = exp( Sum_{n>=1} a(n)*x^n/n ), then G(x) = 1/Product_{n>=1} (1-x^n*G(x)^n) is the g.f. of A109085. - Paul D. Hanna, Apr 05 2012
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165..., c = A327279 = 0.26801521271073331568695383828... . - Vaclav Kotesovec, Sep 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 30 2015

A073229 Decimal expansion of e^(1/e).

Original entry on oeis.org

1, 4, 4, 4, 6, 6, 7, 8, 6, 1, 0, 0, 9, 7, 6, 6, 1, 3, 3, 6, 5, 8, 3, 3, 9, 1, 0, 8, 5, 9, 6, 4, 3, 0, 2, 2, 3, 0, 5, 8, 5, 9, 5, 4, 5, 3, 2, 4, 2, 2, 5, 3, 1, 6, 5, 8, 2, 0, 5, 2, 2, 6, 6, 4, 3, 0, 3, 8, 5, 4, 9, 3, 7, 7, 1, 8, 6, 1, 4, 5, 0, 5, 5, 7, 3, 5, 8, 2, 9, 2, 3, 0, 4, 7, 0, 9, 8, 8, 5, 1, 1, 4, 2, 9, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Comments

e^(1/e) = 1/((1/e)^(1/e)) (reciprocal of A072364).
Let w(n+1)=A^w(n); then w(n) converges if and only if (1/e)^e <= A <= e^(1/e) (see the comments in A073230) for initial value w(1)=A. If A=e^(1/e) then lim_{n->infinity} w(n) = e. - Benoit Cloitre, Aug 06 2002; corrected by Robert FERREOL, Jun 12 2015
x^(1/x) is maximum for x = e and the maximum value is e^(1/e). This gives an interesting and direct proof that 2 < e < 4 as 2^(1/2) < e^(1/e) > 4^(1/4) while 2^(1/2) = 4^(1/4). - Amarnath Murthy, Nov 26 2002
For large n, A234604(n)/A234604(n-1) converges to e^(1/e). - Richard R. Forberg, Dec 28 2013
Value of the unique base b > 0 for which the exponential curve y=b^x and its inverse y=log_b(x) kiss each other; the kissing point is (e,e). - Stanislav Sykora, May 25 2015
Actually, there is another base with such property, b=(1/e)^e with kiss point (1/e,1/e). - Yuval Paz, Dec 29 2018
The problem of finding the maximum of f(x) = x^(1/x) was posed and solved by the Swiss mathematician Jakob Steiner (1796-1863) in 1850. - Amiram Eldar, Jun 17 2021

Examples

			1.44466786100976613365833910859...
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 35.

Crossrefs

Cf. A001113 (e), A068985 (1/e), A073230 ((1/e)^e), A072364 ((1/e)^(1/e)), A073226 (e^e).

Programs

  • Maple
    evalf[110](exp(exp(-1))); # Muniru A Asiru, Dec 29 2018
  • Mathematica
    RealDigits[ E^(1/E), 10, 110] [[1]]
  • PARI
    exp(1)^exp(-1)

Formula

Equals 1 + Integral_{x = 1/e..1} (1 + log(x))/x^x dx = 1 - Integral_{x = 0..1/e} (1 + log(x))/x^x dx. - Peter Bala, Oct 30 2019
Equals Sum_{k>=0} exp(-k)/k!. - Amiram Eldar, Aug 13 2020
Equals lim_{x->oo} (Sum_{n>=1} (x/n)^n)^(1/x) (Furdui, 2017). - Amiram Eldar, Mar 26 2022

A144048 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 5, 1, 1, 9, 14, 13, 7, 1, 1, 17, 36, 40, 24, 11, 1, 1, 33, 98, 136, 101, 48, 15, 1, 1, 65, 276, 490, 477, 266, 86, 22, 1, 1, 129, 794, 1828, 2411, 1703, 649, 160, 30, 1, 1, 257, 2316, 6970, 12729, 11940, 5746, 1593, 282, 42, 1, 1, 513
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2008

Keywords

Comments

In general, column k > 0 is asymptotic to (Gamma(k+2)*Zeta(k+2))^((1-2*Zeta(-k)) /(2*k+4)) * exp((k+2)/(k+1) * (Gamma(k+2)*Zeta(k+2))^(1/(k+2)) * n^((k+1)/(k+2)) + Zeta'(-k)) / (sqrt(2*Pi*(k+2)) * n^((k+3-2*Zeta(-k))/(2*k+4))). - Vaclav Kotesovec, Mar 01 2015

Examples

			Square array begins:
  1,  1,   1,   1,    1,     1, ...
  1,  1,   1,   1,    1,     1, ...
  2,  3,   5,   9,   17,    33, ...
  3,  6,  14,  36,   98,   276, ...
  5, 13,  40, 136,  490,  1828, ...
  7, 24, 101, 477, 2411, 12729, ...
		

Crossrefs

Rows give: 0-1: A000012, 2: A000051, A094373, 3: A001550, 4: A283456, 5: A283457.
Main diagonal gives A252782.
Cf. A283272.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->j^k)(n); seq(seq(A(n,d-n), n=0..d), d=0..13);
  • Mathematica
    etr[p_] := Module[{ b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[Function[j, j^k]][n]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^(j^k).

A255672 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(k*n).

Original entry on oeis.org

1, 1, 7, 37, 215, 1251, 7459, 44885, 272727, 1668313, 10263057, 63423482, 393440867, 2448542136, 15280435191, 95588065737, 599213418327, 3763242239317, 23673166664695, 149138199543613, 940796936557265, 5941862248557566, 37568309060087582, 237767215209245583
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2015

Keywords

Comments

Number of partitions of n when parts i are of n*i kinds. - Alois P. Heinz, Nov 23 2018
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)

Crossrefs

Main diagonal of A255961.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(k*n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 6.468409145117839606941857350154192468889057616577..., c = 0.25864792865819067933968646380369970564... . - Vaclav Kotesovec, Mar 01 2015
a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A270917 Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k^n).

Original entry on oeis.org

1, 1, 4, 35, 457, 12421, 678101, 69540142, 13730026114, 5551573311817, 4379029522335786, 6705866900012021577, 21038900445652125741759, 131183458646068931932668114, 1603688863449847489871671547959, 40294004792352613617780682256221711
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Crossrefs

Main diagonal of A284992.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861...

A270923 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k^n).

Original entry on oeis.org

1, 2, 10, 88, 1414, 46648, 3026028, 373615284, 92794268694, 46265940243794, 44694344296430280, 86689242777435107120, 340600515192402995860548, 2624923513793602103874986688, 40749869155795866122979193705136, 1290021269710020392957588463834452744
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861...
a(n) = [x^n] exp(Sum_{k>=1} (sigma_(n+1)(2*k) - sigma_(n+1)(k))*x^k/(2^n*k)). - Ilya Gutkovskiy, Apr 26 2019

A301655 a(n) = [x^n] 1/(1 - Sum_{k>=1} k^n*x^k).

Original entry on oeis.org

1, 1, 5, 44, 723, 24655, 1715816, 239697569, 69557364821, 41297123651644, 49900451628509015, 125141540794392423599, 641579398300246011553552, 6729809577032172543373047313, 146355880526667013027682326650073, 6505380999057202235872595196799580684
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 25 2018

Keywords

Comments

Number of compositions (ordered partitions) of n where there are k^n sorts of part k.
a(n) is the n-th term of invert transform of n-th powers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[k^n x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 15}]
    Table[SeriesCoefficient[1/(1 - PolyLog[-n, x]), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = [x^n] 1/(1 - PolyLog(-n,x)), where PolyLog() is the polylogarithm function.
From Vaclav Kotesovec, Mar 27 2018: (Start)
a(n) ~ 3^(n^2/3) if mod(n,3)=0
a(n) ~ 3^(n*(n-4)/3-2)*2^(2*n-1)*(n-1)*(n+8) if mod(n,3)=1
a(n) ~ 3^((n+1)*(n-3)/3)*2^n*(n+1) if mod(n,3)=2
(End)

A294388 a(n) = n! * [x^n] exp(Sum_{k=1..n} sigma_n(k) * x^k).

Original entry on oeis.org

1, 1, 11, 223, 12193, 1548841, 501460531, 355752425239, 558112176198305, 2023318561014654769, 15928875457207423721731, 268023268481704204728199711, 10084410400965244525857478169665, 817174553170437003290060071895273113
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Crossrefs

Main diagonal of A294296.
Cf. A252782.

Programs

  • Mathematica
    Table[n! * SeriesCoefficient[Exp[Sum[DivisorSigma[n,k] * x^k, {k,1,n}]],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 30 2025 *)

A300457 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n^k).

Original entry on oeis.org

1, -1, -3, -1, 25, 624, 9871, 170470, 3027249, 55077245, 979330606, 15079702923, 94670678245, -7958168036625, -626145997536240, -34564907982551791, -1733699815491494303, -84294315853736719077, -4067859614343931897505, -196552300464314521511610, -9519733465269825759734169
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} (1 - x^k)^(n^k) begins:
n = 0: (1),  0,    0,    0,   0,     0,  ...
n = 1:  1, (-1),  -1,    0,   0,     1,  ...
n = 2:  1,  -2,  (-3),   0,   2,    12,  ...
n = 3:  1,  -3,   -6,  (-1),  9,    63,  ...
n = 4:  1,  -4,  -10,   -4, (25),  224,  ...
n = 5:  1,  -5,  -15,  -10,  55,  (624), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

A300458 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k).

Original entry on oeis.org

1, -1, -1, -10, 11, 374, 9792, 183847, 3469427, 65038049, 1195396233, 19667738452, 189089161562, -6219720781782, -606316892131934, -35104997710496175, -1795953382595105853, -88223902016631657740, -4283800987347611165184, -207864171877269042498096, -10102590396625592962089500
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} 1/(1 + x^k)^(n^k) begins:
n = 0: (1),  0,    0,    0,   0,     0,  ...
n = 1:  1, (-1),   0,   -1,   1,    -1,  ...
n = 2:  1,  -2,  (-1),  -4,   3,    -2,  ...
n = 3:  1,  -3,   -3, (-10),  6,    15,  ...
n = 4:  1,  -4,   -6,  -20, (11),  104,  ...
n = 5:  1,  -5,  -10,  -35,  20,  (374), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Showing 1-10 of 11 results. Next