cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Seiichi Kirikami

Seiichi Kirikami's wiki page.

Seiichi Kirikami has authored 16 sequences. Here are the ten most recent ones:

A209084 a(n) = 2*a(n-1) + 4*a(n-2) with n>1, a(0)=0, a(1)=4.

Original entry on oeis.org

0, 4, 8, 32, 96, 320, 1024, 3328, 10752, 34816, 112640, 364544, 1179648, 3817472, 12353536, 39976960, 129368064, 418643968, 1354760192, 4384096256, 14187233280, 45910851584, 148570636288, 480784678912, 1555851902976, 5034842521600, 16293092655104
Offset: 0

Author

Seiichi Kirikami, Mar 06 2012

Keywords

Comments

a(n)/A063727(n) are convergents for A134972.
Abs(Sum_{i=0..n} C(n,n-i)*a(i)-(sqrt(5)-1)* A033887(n))->0. - Seiichi Kirikami, Jan 20 2016

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Cf. A086344 (this sequence with signs).

Programs

  • Magma
    I:=[0,4]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 16 2016
  • Mathematica
    RecurrenceTable[{a[n]==2*a[n-1]+4*a[n-2], a[0]==0, a[1]==4}, a, {n, 30}]
    LinearRecurrence[{2, 4}, {0, 4}, 40] (* Vincenzo Librandi, Jan 16 2016 *)
  • PARI
    concat(0, Vec(4*x/(1-2*x-4*x^2) + O(x^40))) \\ Michel Marcus, Jan 16 2016
    

Formula

a(n) = (2/sqrt(5))*((1+sqrt(5))^n-(1-sqrt(5))^n).
G.f.: 4*x/(1-2*x-4*x^2). - Bruno Berselli, Mar 08 2012
a(n) = 4*A085449(n) = 2*A103435(n). - Bruno Berselli, Mar 08 2012
Sum_{n>=1} 1/a(n) = (1/4) * A269991. - Amiram Eldar, Feb 01 2021

A206532 a(n) = (2(n+1)(2n+1)-1) * a(n-1) + 2n(2n-1) * a(n-2), a(0) = 1, a(1) = 11.

Original entry on oeis.org

1, 11, 331, 18535, 1668151, 220195931, 40075659443, 9618158266319, 2943156429493615, 1118399443207573699, 516700542761899048939, 285218699604568275014327, 185392154742969378759312551, 140156468985684850342040288555
Offset: 0

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The denominators of the fractions limiting to the value of A206533.

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc.,1966.

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = (2*(n+1)*(2*n+1)-1) * a(n-1) + 2*n*(2*n-1) * a(n-2), a(0) = 1, a(1) = 11},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Sep 16 2018
  • Mathematica
    RecurrenceTable[{a[n]==(2(n+1)(2n+1)-1)a[n-1]+2n(2n-1)a[n-2],a[0]==1,a[1]==11},a,{n,15}]

Formula

a(n) = A082108*a(n-1) + A002939*a(n-2), a(0) = 1, a(1) = 11.
a(n) = -4*n*(-1)^n*(n+1)*LommelS1(2*n+1/2, 3/2, 1)-2*(-1)^n*(n+1)*LommelS1(2*n+3/2, 1/2, 1)+(1-cos(1))*(2*n+2)!+(-1)^n. - Robert Israel, Sep 16 2018

A206531 a(n) = (2*(n+1)*(2*n+1)-1)*a(n-1) + 2*n*(2*n-1)*a(n-2), a(0)=0, a(1)=2.

Original entry on oeis.org

0, 2, 58, 3250, 292498, 38609738, 7026972314, 1686473355362, 516060846740770, 196103121761492602, 90599642253809582122, 50011002524102889331346, 32507151640666878065374898, 24575406640344159817423422890
Offset: 0

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The numerators of the fractions limiting to the value of A206533.

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Magma
    [n le 2 select 2*(n-1) else (2*n*(2*n-1)-1)*Self(n-1) + 2*(n-1)*(2*n-3)*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 21 2022
    
  • Mathematica
    RecurrenceTable[{a[n]==(2(n+1)(2n+1)-1)a[n-1]+2n(2n-1)a[n-2],a[0]==0,a[1]==2},a,{n,15}]
  • SageMath
    @CachedFunction
    def a(n): # a = A206531
        if (n<2): return 2*n
        else: return (2*(n+1)*(2*n+1)-1)*a(n-1) + 2*n*(2*n-1)*a(n-2)
    [a(n) for n in range(31)] # G. C. Greubel, Dec 21 2022

Formula

a(n) = A082108(n)*a(n-1) + A002939(n)*a(n-2), a(0) = 0, a(1) = 2.

A206308 a(n) = ((2*n+2)*(2*n+3) - 1)*a(n-1) + 2*n*(2*n+1)*a(n-2), a(0)=1, a(1)=19.

Original entry on oeis.org

1, 19, 799, 57527, 6327971, 987163475, 207304329751, 56386777692271, 19284277970756683, 8099396747717806859, 4098294754345210270655, 2458976852607126162392999, 1726201750530202565999885299, 1401675821430524483591906862787
Offset: 0

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The denominators of the fractions limiting to the value of A206530.

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Magma
    [n le 2 select 19^(n-1) else (4*n^2+2*n-1)*Self(n-1) + 2*(n-1)*(2*n-1)*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 21 2022
    
  • Mathematica
    RecurrenceTable[{a[n]==((2n+3)(2n+2)-1)a[n-1]+2n(2n+1)a[n-2], a[0]==1, a[1]==19}, a, {n,15}]
  • SageMath
    @CachedFunction # a = A206308
    def a(n): return 19^n if (n<2) else (4*n^2+10*n+5)*a(n-1) + 2*n*(2*n+1)*a(n-2)
    [a(n) for n in range(31)] # G. C. Greubel, Dec 21 2022

Formula

a(n) = A125202(n+2)*a(n-1) + A002943(n)*a(n-2), with a(0) = 1, a(1) = 19.

A206307 a(n) = ((2*n+2)*(2*n+3) - 1)*a(n-1) + 2*n*(2*n+1)*a(n-2), a(0)=0, a(1)=6.

Original entry on oeis.org

0, 6, 246, 17718, 1948974, 304039950, 63848389494, 17366761942374, 5939432584291902, 2494561685402598846, 1262248212813715016070, 757348927688229009642006, 531658947237136764768688206, 431707065156555052992174823278
Offset: 0

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The numerators of the fractions limiting to the value of A206530.

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Magma
    [n le 2 select 6*(n-1) else (4*n^2+2*n-1)*Self(n-1) + 2*(n-1)*(2*n-1)*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 20 2022
    
  • Mathematica
    RecurrenceTable[{a[n]==((2n+3)(2n+2)-1)a[n-1]+2n(2n+1)a[n-2],a[0]==0,a[1]==6},a,{n,15}]
  • SageMath
    @CachedFunction
    def a(n): return 6*n if (n<2) else (4*n^2+10*n+5)*a(n-1) + 2*n*(2*n+1)*a(n-2)
    [a(n) for n in range(31)] # G. C. Greubel, Dec 20 2022

Formula

a(n) = A125202(n+2)*a(n-1) + A002943(n)*a(n-2), a(0) = 0, a(1) = 6.

A206530 Decimal expansion of 1/(1-sin(1)).

Original entry on oeis.org

6, 3, 0, 7, 9, 9, 3, 5, 1, 6, 4, 4, 3, 7, 4, 0, 0, 2, 7, 5, 1, 3, 5, 2, 1, 7, 3, 9, 8, 2, 4, 1, 6, 0, 1, 2, 8, 9, 7, 1, 3, 4, 2, 0, 4, 7, 2, 5, 7, 6, 3, 9, 3, 0, 2, 2, 5, 2, 4, 0, 1, 0, 1, 5, 3, 4, 9, 7, 9, 9, 3, 2, 6, 2, 4, 1, 2, 3, 5, 5, 6, 9, 1, 9, 2, 8, 6, 2, 1, 4, 8, 3, 8, 3, 9, 0, 7, 0, 0, 9, 1, 3, 9
Offset: 1

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The value of the limit of (A206307+6*A206308) / (A206308).

Examples

			6.3079935164437400275135217398...
		

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(150)); 1/(1-Sin(1)); // G. C. Greubel, Dec 20 2022
    
  • Mathematica
    RealDigits[N[1/(1-Sin[1]), 150]][[1]]
  • SageMath
    numerical_approx(1/(1-sin(1)), digits=150) # G. C. Greubel, Dec 20 2022

Formula

Equals 1/(1-A049469).
A206307/A206308 + 6 -> 1/(1-A049469).
Abs(A206308/(1-sin(1)) - (A206307 + 6*A206308)) -> 0.

A206533 Decimal expansion of 1/(1-cos(1)).

Original entry on oeis.org

2, 1, 7, 5, 3, 4, 2, 6, 4, 9, 6, 7, 0, 0, 2, 1, 4, 1, 0, 7, 7, 6, 7, 8, 6, 7, 5, 9, 6, 5, 6, 0, 6, 9, 9, 7, 5, 8, 4, 8, 4, 4, 7, 4, 6, 7, 6, 2, 4, 1, 8, 4, 2, 1, 3, 7, 5, 0, 5, 4, 0, 0, 5, 5, 1, 4, 7, 0, 3, 0, 7, 1, 0, 2, 8, 9, 3, 5, 0, 6, 1, 8, 1, 9, 9, 0, 8, 7, 8, 4, 0, 4, 8, 3, 5, 5, 8, 2, 9, 1, 0, 8
Offset: 1

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The value of the fractional limit of the numerators(A206531+2*A206532) and the denominators(A206532).
Abs(A206532/(1-cos(1)) - (A206531+2*A206532)) -> 0.

Examples

			2.17534264967002141077678675965606997584844...
		

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Programs

  • Mathematica
    RealDigits[N[1/(1-Cos[1]), 150]][[1]]
  • PARI
    1/(1 - cos(1)) \\ Stefano Spezia, Apr 21 2025

Formula

Equals 1/(1-A049470).
A206531/A206532+2 -> 1/(1-A049470).
Equals 1/A371936. - Hugo Pfoertner, Apr 21 2025

Extensions

Incorrect a(86)=9 removed by Georg Fischer, Apr 04 2020

A196878 Decimal expansion of (Pi/8)*(6*zeta(3)+Pi^2*log(2)+4*log(2)^3).

Original entry on oeis.org

6, 0, 4, 1, 8, 8, 2, 9, 0, 9, 7, 7, 5, 0, 9, 3, 5, 2, 2, 1, 5, 0, 4, 2, 4, 1, 3, 0, 6, 7, 5, 9, 9, 5, 9, 8, 5, 5, 0, 8, 7, 1, 0, 3, 0, 5, 7, 7, 4, 6, 4, 1, 9, 0, 7, 2, 5, 8, 6, 0, 1, 0, 1, 5, 2, 6, 0, 0, 4, 3, 0, 2, 5, 4, 6, 5, 5, 7, 5, 8, 1, 6, 0, 4, 0, 4, 7, 0, 8, 2, 6, 5, 8, 8, 2, 6, 1, 6, 9, 5, 1, 5, 5, 8, 1
Offset: 1

Author

Seiichi Kirikami, Oct 07 2011

Keywords

Comments

The absolute value of the integral {x=0..Pi/2} log(sin(x))^3 dx. The absolute value of m=3 of sqrt(Pi)/2*(d^m/da^m(gamma((a+1)/2)/gamma(a/2+1))) at a=0. - Seiichi Kirikami and Peter J. C. Moses, Oct 07 2011

Examples

			6.041882909775093522150424130675995...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 3.621.1

Crossrefs

Programs

  • Maple
    Pi/8*(6*Zeta(3)+Pi^2*log(2)+4*log(2)^3) ; evalf(%) ; # R. J. Mathar, Oct 08 2011
  • Mathematica
    RealDigits[N[Pi/8 (6 Zeta[3] + Pi^2 Log[2] + 4 Log[2]^3), 150]][[1]]
    Sqrt[Pi]/2*Derivative[3][Gamma[(#+1)/2]/Gamma[#/2+1]&][0] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 25 2013 *)
  • PARI
    Pi/8*(6*zeta(3)+Pi^2*log(2)+4*log(2)^3) \\ G. C. Greubel, Feb 12 2017

Formula

Equals A019675*(6*A002117 + A002388*A002162 + 4*A002162^3).

A196877 Decimal expansion of Pi/2*(Pi^2/12 + (log(2))^2).

Original entry on oeis.org

2, 0, 4, 6, 6, 2, 2, 0, 2, 4, 4, 7, 2, 7, 4, 0, 6, 4, 6, 1, 6, 9, 6, 4, 1, 0, 0, 8, 1, 7, 6, 9, 7, 3, 4, 7, 6, 6, 3, 7, 4, 4, 1, 9, 5, 3, 4, 9, 4, 6, 5, 6, 2, 6, 0, 6, 1, 0, 2, 6, 8, 5, 5, 2, 7, 2, 5, 9, 0, 6, 6, 8, 7, 9, 5, 1, 2, 1, 7, 3, 3, 6, 5, 8, 4, 6, 8, 8, 4, 6, 7, 6, 3, 2, 9, 1, 2, 5, 2, 5, 3, 4, 3, 4, 7
Offset: 1

Author

Seiichi Kirikami, Oct 07 2011

Keywords

Comments

The value of the integral_{x=0..Pi/2} log(sin(x))^2 dx. The value of sqrt(Pi)/2*(d^2/da^2(gamma((a+1)/2)/gamma(a/2+1))) at a=0. - Seiichi Kirikami and Peter J. C. Moses, Oct 07 2011

Examples

			2.04662202447274064616964100817...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 3.621.1

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Pi/2 (Pi^2/12 + Log[2]^2),150]][[1]]
  • PARI
    Pi/2*(Pi^2/12+(log(2))^2) \\ Michel Marcus, Jan 13 2015

Formula

Equals A019669*(A072691 + A002162^2).
Equals Integral_{x=0..1} log(x)^2/sqrt(1-x^2) dx. - Amiram Eldar, May 27 2023

A193712 Decimal expansion of Pi*zeta(3)/4.

Original entry on oeis.org

9, 4, 4, 0, 9, 3, 2, 8, 4, 0, 4, 0, 7, 6, 9, 7, 3, 1, 8, 0, 0, 8, 6, 8, 9, 4, 8, 3, 1, 3, 1, 3, 5, 7, 0, 5, 3, 7, 5, 3, 0, 7, 5, 9, 3, 1, 9, 9, 1, 6, 3, 3, 2, 4, 3, 9, 5, 7, 3, 8, 3, 1, 0, 7, 2, 1, 1, 3, 8, 6, 6, 3, 7, 5, 6, 6, 2, 5, 0, 8, 2, 9, 4, 6, 4, 1, 9, 6, 0, 5, 6, 6, 6, 4, 8, 9, 6, 7, 6, 6, 3, 6, 4, 7, 5
Offset: 0

Author

Seiichi Kirikami, Aug 31 2011

Keywords

Comments

The absolute value of Integral_{x=0..Pi/2} x^2*log(2*cos(x)) dx.
The absolute value of (d/db(d^2/da^2(Integral_{x=0..Pi/2} cos(ax)*(2*cos(x))^b dx))).
The absolute value of (Pi/2)*(d/db(d^2/da^2(gamma(b+1)/gamma((b+a)/2+1)/gamma((b-a)/2+1))) at a=0 and b=0. - Seiichi Kirikami and Peter J. C. Moses

Examples

			0.94409328404076973180...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 3.631.9

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[Pi Zeta[3]/4, 150]][[1]]

Formula

Equals A000796*A002117/4.
Equals 2 * Integral_{x=0..1} arcsin(x)^2*arccos(x)/x dx (Kobayashi, 2021). - Amiram Eldar, Jun 23 2023