cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A206532 a(n) = (2(n+1)(2n+1)-1) * a(n-1) + 2n(2n-1) * a(n-2), a(0) = 1, a(1) = 11.

Original entry on oeis.org

1, 11, 331, 18535, 1668151, 220195931, 40075659443, 9618158266319, 2943156429493615, 1118399443207573699, 516700542761899048939, 285218699604568275014327, 185392154742969378759312551, 140156468985684850342040288555
Offset: 0

Views

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The denominators of the fractions limiting to the value of A206533.

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc.,1966.

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = (2*(n+1)*(2*n+1)-1) * a(n-1) + 2*n*(2*n-1) * a(n-2), a(0) = 1, a(1) = 11},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Sep 16 2018
  • Mathematica
    RecurrenceTable[{a[n]==(2(n+1)(2n+1)-1)a[n-1]+2n(2n-1)a[n-2],a[0]==1,a[1]==11},a,{n,15}]

Formula

a(n) = A082108*a(n-1) + A002939*a(n-2), a(0) = 1, a(1) = 11.
a(n) = -4*n*(-1)^n*(n+1)*LommelS1(2*n+1/2, 3/2, 1)-2*(-1)^n*(n+1)*LommelS1(2*n+3/2, 1/2, 1)+(1-cos(1))*(2*n+2)!+(-1)^n. - Robert Israel, Sep 16 2018

A206533 Decimal expansion of 1/(1-cos(1)).

Original entry on oeis.org

2, 1, 7, 5, 3, 4, 2, 6, 4, 9, 6, 7, 0, 0, 2, 1, 4, 1, 0, 7, 7, 6, 7, 8, 6, 7, 5, 9, 6, 5, 6, 0, 6, 9, 9, 7, 5, 8, 4, 8, 4, 4, 7, 4, 6, 7, 6, 2, 4, 1, 8, 4, 2, 1, 3, 7, 5, 0, 5, 4, 0, 0, 5, 5, 1, 4, 7, 0, 3, 0, 7, 1, 0, 2, 8, 9, 3, 5, 0, 6, 1, 8, 1, 9, 9, 0, 8, 7, 8, 4, 0, 4, 8, 3, 5, 5, 8, 2, 9, 1, 0, 8
Offset: 1

Views

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The value of the fractional limit of the numerators(A206531+2*A206532) and the denominators(A206532).
Abs(A206532/(1-cos(1)) - (A206531+2*A206532)) -> 0.

Examples

			2.17534264967002141077678675965606997584844...
		

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[1/(1-Cos[1]), 150]][[1]]
  • PARI
    1/(1 - cos(1)) \\ Stefano Spezia, Apr 21 2025

Formula

Equals 1/(1-A049470).
A206531/A206532+2 -> 1/(1-A049470).
Equals 1/A371936. - Hugo Pfoertner, Apr 21 2025

Extensions

Incorrect a(86)=9 removed by Georg Fischer, Apr 04 2020
Showing 1-2 of 2 results.