cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A206531 a(n) = (2*(n+1)*(2*n+1)-1)*a(n-1) + 2*n*(2*n-1)*a(n-2), a(0)=0, a(1)=2.

Original entry on oeis.org

0, 2, 58, 3250, 292498, 38609738, 7026972314, 1686473355362, 516060846740770, 196103121761492602, 90599642253809582122, 50011002524102889331346, 32507151640666878065374898, 24575406640344159817423422890
Offset: 0

Views

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The numerators of the fractions limiting to the value of A206533.

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Magma
    [n le 2 select 2*(n-1) else (2*n*(2*n-1)-1)*Self(n-1) + 2*(n-1)*(2*n-3)*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 21 2022
    
  • Mathematica
    RecurrenceTable[{a[n]==(2(n+1)(2n+1)-1)a[n-1]+2n(2n-1)a[n-2],a[0]==0,a[1]==2},a,{n,15}]
  • SageMath
    @CachedFunction
    def a(n): # a = A206531
        if (n<2): return 2*n
        else: return (2*(n+1)*(2*n+1)-1)*a(n-1) + 2*n*(2*n-1)*a(n-2)
    [a(n) for n in range(31)] # G. C. Greubel, Dec 21 2022

Formula

a(n) = A082108(n)*a(n-1) + A002939(n)*a(n-2), a(0) = 0, a(1) = 2.

A206532 a(n) = (2(n+1)(2n+1)-1) * a(n-1) + 2n(2n-1) * a(n-2), a(0) = 1, a(1) = 11.

Original entry on oeis.org

1, 11, 331, 18535, 1668151, 220195931, 40075659443, 9618158266319, 2943156429493615, 1118399443207573699, 516700542761899048939, 285218699604568275014327, 185392154742969378759312551, 140156468985684850342040288555
Offset: 0

Views

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The denominators of the fractions limiting to the value of A206533.

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc.,1966.

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = (2*(n+1)*(2*n+1)-1) * a(n-1) + 2*n*(2*n-1) * a(n-2), a(0) = 1, a(1) = 11},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Sep 16 2018
  • Mathematica
    RecurrenceTable[{a[n]==(2(n+1)(2n+1)-1)a[n-1]+2n(2n-1)a[n-2],a[0]==1,a[1]==11},a,{n,15}]

Formula

a(n) = A082108*a(n-1) + A002939*a(n-2), a(0) = 1, a(1) = 11.
a(n) = -4*n*(-1)^n*(n+1)*LommelS1(2*n+1/2, 3/2, 1)-2*(-1)^n*(n+1)*LommelS1(2*n+3/2, 1/2, 1)+(1-cos(1))*(2*n+2)!+(-1)^n. - Robert Israel, Sep 16 2018

A371936 Decimal expansion of Sum_{k>=0} (-1)^k / (2*(k+1)*(2*k+1)!).

Original entry on oeis.org

4, 5, 9, 6, 9, 7, 6, 9, 4, 1, 3, 1, 8, 6, 0, 2, 8, 2, 5, 9, 9, 0, 6, 3, 3, 9, 2, 5, 5, 7, 0, 2, 3, 3, 9, 6, 2, 6, 7, 6, 8, 9, 5, 7, 9, 3, 8, 2, 0, 7, 7, 7, 7, 2, 3, 2, 9, 9, 0, 2, 7, 4, 4, 6, 1, 8, 8, 9, 9, 6, 0, 5, 2, 2, 5, 5, 2, 8, 2, 3, 5, 4, 8, 2, 0, 4
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2024

Keywords

Examples

			0.459697694131860282599063392557023396267689579382077772...
		

Crossrefs

Programs

  • Mathematica
    s = N[Sum[(-1)^k/(2(k + 1) (2 k + 1)!), {k, 0, Infinity}], 120]
    First[RealDigits[s]]
  • PARI
    1 - cos(1) \\ Stefano Spezia, Apr 21 2025

Formula

Equals 1 - cos(1) = A371935/2 = 1 - A049470.
Equals 1/A206533. - Hugo Pfoertner, Apr 26 2024
Showing 1-3 of 3 results.