cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A206533 Decimal expansion of 1/(1-cos(1)).

Original entry on oeis.org

2, 1, 7, 5, 3, 4, 2, 6, 4, 9, 6, 7, 0, 0, 2, 1, 4, 1, 0, 7, 7, 6, 7, 8, 6, 7, 5, 9, 6, 5, 6, 0, 6, 9, 9, 7, 5, 8, 4, 8, 4, 4, 7, 4, 6, 7, 6, 2, 4, 1, 8, 4, 2, 1, 3, 7, 5, 0, 5, 4, 0, 0, 5, 5, 1, 4, 7, 0, 3, 0, 7, 1, 0, 2, 8, 9, 3, 5, 0, 6, 1, 8, 1, 9, 9, 0, 8, 7, 8, 4, 0, 4, 8, 3, 5, 5, 8, 2, 9, 1, 0, 8
Offset: 1

Views

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The value of the fractional limit of the numerators(A206531+2*A206532) and the denominators(A206532).
Abs(A206532/(1-cos(1)) - (A206531+2*A206532)) -> 0.

Examples

			2.17534264967002141077678675965606997584844...
		

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[1/(1-Cos[1]), 150]][[1]]
  • PARI
    1/(1 - cos(1)) \\ Stefano Spezia, Apr 21 2025

Formula

Equals 1/(1-A049470).
A206531/A206532+2 -> 1/(1-A049470).
Equals 1/A371936. - Hugo Pfoertner, Apr 21 2025

Extensions

Incorrect a(86)=9 removed by Georg Fischer, Apr 04 2020

A371935 Decimal expansion of Sum_{k>=0} (-1)^k / ((k+1)*(2*k+1)!).

Original entry on oeis.org

9, 1, 9, 3, 9, 5, 3, 8, 8, 2, 6, 3, 7, 2, 0, 5, 6, 5, 1, 9, 8, 1, 2, 6, 7, 8, 5, 1, 1, 4, 0, 4, 6, 7, 9, 2, 5, 3, 5, 3, 7, 9, 1, 5, 8, 7, 6, 4, 1, 5, 5, 5, 4, 4, 6, 5, 9, 8, 0, 5, 4, 8, 9, 2, 3, 7, 7, 9, 9, 2, 1, 0, 4, 5, 1, 0, 5, 6, 4, 7, 0, 9, 6, 4, 0, 9
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2024

Keywords

Examples

			0.91939538826372056519812678511404679253...
		

Crossrefs

Programs

  • Mathematica
    s = N[Sum[(-1)^k/((k + 1) (2 k + 1)!), {k, 0, Infinity}], 120]
    First[RealDigits[s]]
  • PARI
    2*(1 - cos(1)) \\ Stefano Spezia, Apr 21 2025

Formula

Equals 2*(1 - cos(1)) = 2 * A371936.
From Hugo Pfoertner, Apr 26 2024: (Start)
Equals A243596/Pi.
Equals A272795^2. (End)
Showing 1-2 of 2 results.