cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A206530 Decimal expansion of 1/(1-sin(1)).

Original entry on oeis.org

6, 3, 0, 7, 9, 9, 3, 5, 1, 6, 4, 4, 3, 7, 4, 0, 0, 2, 7, 5, 1, 3, 5, 2, 1, 7, 3, 9, 8, 2, 4, 1, 6, 0, 1, 2, 8, 9, 7, 1, 3, 4, 2, 0, 4, 7, 2, 5, 7, 6, 3, 9, 3, 0, 2, 2, 5, 2, 4, 0, 1, 0, 1, 5, 3, 4, 9, 7, 9, 9, 3, 2, 6, 2, 4, 1, 2, 3, 5, 5, 6, 9, 1, 9, 2, 8, 6, 2, 1, 4, 8, 3, 8, 3, 9, 0, 7, 0, 0, 9, 1, 3, 9
Offset: 1

Views

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The value of the limit of (A206307+6*A206308) / (A206308).

Examples

			6.3079935164437400275135217398...
		

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(150)); 1/(1-Sin(1)); // G. C. Greubel, Dec 20 2022
    
  • Mathematica
    RealDigits[N[1/(1-Sin[1]), 150]][[1]]
  • SageMath
    numerical_approx(1/(1-sin(1)), digits=150) # G. C. Greubel, Dec 20 2022

Formula

Equals 1/(1-A049469).
A206307/A206308 + 6 -> 1/(1-A049469).
Abs(A206308/(1-sin(1)) - (A206307 + 6*A206308)) -> 0.

A206307 a(n) = ((2*n+2)*(2*n+3) - 1)*a(n-1) + 2*n*(2*n+1)*a(n-2), a(0)=0, a(1)=6.

Original entry on oeis.org

0, 6, 246, 17718, 1948974, 304039950, 63848389494, 17366761942374, 5939432584291902, 2494561685402598846, 1262248212813715016070, 757348927688229009642006, 531658947237136764768688206, 431707065156555052992174823278
Offset: 0

Views

Author

Seiichi Kirikami, Feb 11 2012

Keywords

Comments

The numerators of the fractions limiting to the value of A206530.

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Programs

  • Magma
    [n le 2 select 6*(n-1) else (4*n^2+2*n-1)*Self(n-1) + 2*(n-1)*(2*n-1)*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 20 2022
    
  • Mathematica
    RecurrenceTable[{a[n]==((2n+3)(2n+2)-1)a[n-1]+2n(2n+1)a[n-2],a[0]==0,a[1]==6},a,{n,15}]
  • SageMath
    @CachedFunction
    def a(n): return 6*n if (n<2) else (4*n^2+10*n+5)*a(n-1) + 2*n*(2*n+1)*a(n-2)
    [a(n) for n in range(31)] # G. C. Greubel, Dec 20 2022

Formula

a(n) = A125202(n+2)*a(n-1) + A002943(n)*a(n-2), a(0) = 0, a(1) = 6.
Showing 1-2 of 2 results.