cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A196877 Decimal expansion of Pi/2*(Pi^2/12 + (log(2))^2).

Original entry on oeis.org

2, 0, 4, 6, 6, 2, 2, 0, 2, 4, 4, 7, 2, 7, 4, 0, 6, 4, 6, 1, 6, 9, 6, 4, 1, 0, 0, 8, 1, 7, 6, 9, 7, 3, 4, 7, 6, 6, 3, 7, 4, 4, 1, 9, 5, 3, 4, 9, 4, 6, 5, 6, 2, 6, 0, 6, 1, 0, 2, 6, 8, 5, 5, 2, 7, 2, 5, 9, 0, 6, 6, 8, 7, 9, 5, 1, 2, 1, 7, 3, 3, 6, 5, 8, 4, 6, 8, 8, 4, 6, 7, 6, 3, 2, 9, 1, 2, 5, 2, 5, 3, 4, 3, 4, 7
Offset: 1

Views

Author

Seiichi Kirikami, Oct 07 2011

Keywords

Comments

The value of the integral_{x=0..Pi/2} log(sin(x))^2 dx. The value of sqrt(Pi)/2*(d^2/da^2(gamma((a+1)/2)/gamma(a/2+1))) at a=0. - Seiichi Kirikami and Peter J. C. Moses, Oct 07 2011

Examples

			2.04662202447274064616964100817...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 3.621.1

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Pi/2 (Pi^2/12 + Log[2]^2),150]][[1]]
  • PARI
    Pi/2*(Pi^2/12+(log(2))^2) \\ Michel Marcus, Jan 13 2015

Formula

Equals A019669*(A072691 + A002162^2).
Equals Integral_{x=0..1} log(x)^2/sqrt(1-x^2) dx. - Amiram Eldar, May 27 2023

A217708 Decimal expansion of integral_{0, Pi/4} log(sin(x))^3 dx.

Original entry on oeis.org

6, 0, 3, 7, 5, 8, 1, 1, 0, 6, 3, 0, 9, 5, 9, 8, 1, 7, 0, 2, 6, 7, 4, 3, 6, 8, 9, 2, 6, 5, 0, 2, 6, 7, 4, 6, 7, 5, 5, 0, 3, 9, 8, 2, 8, 5, 8, 8, 8, 6, 8, 6, 2, 7, 1, 7, 5, 1, 8, 0, 4, 9, 0, 1, 3, 5, 5, 8, 7, 4, 2, 2, 1, 2, 7, 0, 1, 6, 0, 6, 7, 4, 0, 9, 7, 6, 9, 3, 5, 9, 7, 6, 6, 7, 5, 9, 9, 6, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Mar 20 2013

Keywords

Comments

Curiously, this integral from 0 to Pi/4 is far more difficult to evaluate by hand than the same integral from 0 to Pi/2.

Examples

			-6.037581106...
		

Crossrefs

Cf. A196878 (the same integral from 0 to Pi/2)

Programs

  • Mathematica
    (1/8)*((-Log[2]^2)*(Pi*Log[2] + 3*Catalan) - 4*Sqrt[2]*(6*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2, 1/2}, {3/2, 3/2, 3/2, 3/2}, 1/2] + HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {3/2, 3/2, 3/2}, 1/2]*Log[8])) // RealDigits[#, 10, 100] & // First
    RealDigits[Integrate[Log[Sin[x]]^3,{x,0,Pi/4}],10,120][[1]] (* Harvey P. Dale, Jun 08 2021 *)

A375594 Decimal expansion of Pi*(Pi^2*log(2) + 4*log(2)^3 + 6*zeta(3))/48.

Original entry on oeis.org

1, 0, 0, 6, 9, 8, 0, 4, 8, 4, 9, 6, 2, 5, 1, 5, 5, 8, 7, 0, 2, 5, 0, 7, 0, 6, 8, 8, 4, 4, 5, 9, 9, 9, 3, 3, 0, 9, 1, 8, 1, 1, 8, 3, 8, 4, 2, 9, 5, 7, 7, 3, 6, 5, 1, 2, 0, 9, 7, 6, 6, 8, 3, 5, 8, 7, 6, 6, 7, 3, 8, 3, 7, 5, 7, 7, 5, 9, 5, 9, 6, 9, 3, 4, 0, 0, 7, 8, 4, 7, 1, 0, 9, 8, 0, 4, 3, 6, 1, 5, 8, 5
Offset: 1

Views

Author

R. J. Mathar, Aug 20 2024

Keywords

Comments

Apart from a factor sqrt(Pi)/16 the same as Adamchik's generalized Stirling number [1/2,4].

Examples

			1.006980484962515...
		

Crossrefs

Cf. A019669 (2F1), A173623 (3F2), A318741 (4F3).

Programs

  • Maple
    1/48*Pi*(Pi^2*log(2)+4*log(2)^3+6*Zeta(3)) ; evalf(%) ;
  • Mathematica
    First[RealDigits[Pi*(Pi^2*Log[2] + 4*Log[2]^3 + 6*Zeta[3])/48, 10, 100]] (* Paolo Xausa, Aug 23 2024 *)

Formula

Equals 5F4(1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2; 1) = Sum_{k>= 0} binomial(2k,k)/[2^(2k)*(2k+1)^4].
Equals A196878/6. - R. J. Mathar, Aug 23 2024
Showing 1-3 of 3 results.