A210764
Square array T(n,k), n>=0, k>=0, read by antidiagonals in which column k gives the partial sums of column k of A144064.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 4, 1, 1, 12, 18, 13, 5, 1, 1, 19, 38, 35, 19, 6, 1, 1, 30, 74, 86, 59, 26, 7, 1, 1, 45, 139, 194, 164, 91, 34, 8, 1, 1, 67, 249, 415, 416, 281, 132, 43, 9, 1, 1, 97, 434, 844, 990, 787, 447, 183, 53, 10, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 4, 8, 13, 19, 26, 34, 43, 53,
1, 7, 18, 35, 59, 91, 132, 183,
1, 12, 38, 86, 164, 281, 447,
1, 19, 74, 194, 416, 787,
1, 30, 139, 415, 990,
1, 45, 249, 844,
1, 67, 434,
1, 97,
1,
-
with(numtheory):
etr:= proc(p) local b;
b:= proc(n) option remember; `if`(n=0, 1,
add(add(d*p(d), d=divisors(j))*b(n-j), j=1..n)/n)
end
end:
A:= (n, k)-> etr(j-> k +`if`(j=1, 1, 0))(n):
seq(seq(A(d-k, k), k=0..d), d=0..14); # Alois P. Heinz, May 20 2013
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[Function[{j}, k + If[j == 1, 1, 0]]][n]; Table[Table[A[d-k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
A000712
Generating function = Product_{m>=1} 1/(1 - x^m)^2; a(n) = number of partitions of n into parts of 2 kinds.
Original entry on oeis.org
1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 752, 1165, 1770, 2665, 3956, 5822, 8470, 12230, 17490, 24842, 35002, 49010, 68150, 94235, 129512, 177087, 240840, 326015, 439190, 589128, 786814, 1046705, 1386930, 1831065, 2408658, 3157789, 4126070, 5374390
Offset: 0
Assume there are integers of two kinds: k and k'; then a(3) = 10 since 3 has the following partitions into parts of two kinds: 111, 111', 11'1', 1'1'1', 12, 1'2, 12', 1'2', 3, and 3'. - _W. Edwin Clark_, Jun 24 2011
There are a(4)=20 partitions of 4 into 2 sorts of parts. Here p:s stands for "part p of sort s":
01: [ 1:0 1:0 1:0 1:0 ]
02: [ 1:0 1:0 1:0 1:1 ]
03: [ 1:0 1:0 1:1 1:1 ]
04: [ 1:0 1:1 1:1 1:1 ]
05: [ 1:1 1:1 1:1 1:1 ]
06: [ 2:0 1:0 1:0 ]
07: [ 2:0 1:0 1:1 ]
08: [ 2:0 1:1 1:1 ]
09: [ 2:0 2:0 ]
10: [ 2:0 2:1 ]
11: [ 2:1 1:0 1:0 ]
12: [ 2:1 1:0 1:1 ]
13: [ 2:1 1:1 1:1 ]
14: [ 2:1 2:1 ]
15: [ 3:0 1:0 ]
16: [ 3:0 1:1 ]
17: [ 3:1 1:0 ]
18: [ 3:1 1:1 ]
19: [ 4:0 ]
20: [ 4:1 ]
- _Joerg Arndt_, Apr 28 2013
The a(4)=20 ordered pairs (R,S) of partitions for n=4 are
([4], [])
([3, 1], [])
([2, 2], [])
([2, 1, 1], [])
([1, 1, 1, 1], [])
([3], [1])
([2, 1], [1])
([1, 1, 1], [1])
([2], [2])
([2], [1, 1])
([1, 1], [2])
([1, 1], [1, 1])
([1], [3])
([1], [2, 1])
([1], [1, 1, 1])
([], [4])
([], [3, 1])
([], [2, 2])
([], [2, 1, 1])
([], [1, 1, 1, 1])
This list was created with the Sage command
for P in PartitionTuples(2,4) : print P;
- _Joerg Arndt_, Apr 29 2013
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + 185*x^8 + ...
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Proposition 2.5.2 on page 78.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 501 terms from T. D. Noe)
- Arvind Ayyer, Amritanshu Prasad, and Steven Spallone, Macdonald trees and determinants of representations for finite Coxeter groups, arXiv:1812.00608 [math.RT], 2018.
- M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys. 25 (1984) 3171, table 1.
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- Jan Brandts and A Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
- E. R. Canfield, C. D. Savage and H. S. Wilf, Regularly spaced subsums of integer partitions, arXiv:math/0308061 [math.CO], 2003.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Hilbert Space Fragmentation in the Chiral Luttinger Liquid, arXiv:2409.10359 [cond-mat.str-el], 2024. See pp. 8, 11.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Momentum-space modulated symmetries in the Luttinger liquid, Phys. Rev. B (2025) Vol. 111, Art. No. 165105. See p. 9.
- B. F. Chen, E. Ghorbani, and K. B. Wong, Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs, Electronic J. Combin. 20(4) (2013), #P22.
- W. Y. C. Chen, K. Q. Ji and H. S. Wilf, BG-ranks and 2-cores, arXiv:math/0605474 [math.CO], 2006.
- W. Edwin Clark, Mohamed Elhamdadi, Xiang-dong Hou, Masahico Saito and Timothy Yeatman, Connected Quandles Associated with Pointed Abelian Groups, arXiv preprint arXiv:1107.5777 [math.RA], 2011.
- W. Edwin Clark and Xiang-dong Hou, Galkin Quandles, Pointed Abelian Groups, and Sequence A000712 arXiv:1108.2215 [math.CO], Aug 10, 2011. [added by Jonathan Vos Post]
- Shouvik Datta, M. R. Gaberdiel, W. Li, and C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
- M. De Salvo, D. Fasino, D. Freni, and G. Lo Faro, Fully simple semihypergroups, transitive digraphs, and sequence A000712, Journal of Algebra, Volume 415, 1 October 2014, pp. 65-87.
- Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat (2018) Vol. 32, No. 12, 4177-4194.
- Paul Hammond and Richard Lewis, Congruences in ordered pairs of partitions, Int. J. Math. Math. Sci. (2004), no.45--48, 2509--2512.
- Ruth Hoffmann, Özgür Akgün, and Christopher Jefferson, Composable Constraint Models for Permutation Enumeration, arXiv:2311.17581 [cs.DM], 2023.
- Saud Hussein, An Identity for the Partition Function Involving Parts of k Different Magnitudes, arXiv:1806.05416 [math.NT], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 129.
- Han Mao Kiah, Anshoo Tandon, and Mehul Motani, Generalized Sphere-Packing Bound for Subblock-Constrained Codes, arXiv:1901.00387 [cs.IT], 2019.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- Yen-chi R. Lin and Shu-Yen Pan, A recursive relation for bipartition numbers, arXiv:2406.14851 [math.CO], 2024.
- P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, and A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.
- Sylvain Prolhac, Spectrum of the totally asymmetric simple exclusion process on a periodic lattice--first excited states, arXiv preprint arXiv:1404.1315 [cond-mat.stat-mech], 2014.
- N. J. A. Sloane, Transforms.
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
-
a000712 = p a008619_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 06 2012
-
# DedekindEta is defined in A000594.
A000712List(len) = DedekindEta(len, -2)
A000712List(39) |> println # Peter Luschny, Mar 09 2018
-
with(combinat): A000712:= n-> add(numbpart(k)*numbpart(n-k), k=0..n): seq(A000712(n), n=0..40); # Emeric Deutsch
-
CoefficientList[ Series[ Product[1/(1 - x^n)^2, {n, 40}], {x, 0, 37}], x]; (* Robert G. Wilson v, Feb 03 2005 *)
Table[Count[Partitions[2*n], q_ /; Tr[(-1)^Mod[Flatten[Position[q, ?OddQ]], 2]] === 0], {n, 12}] (* _Wouter Meeussen, Apr 17 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^-2, {x, 0, n}]; (* Michael Somos, Oct 12 2015 *)
Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@n], {n, 0, 15}] (* Robert Price, Jun 15 2020 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A)^2, n))}; /* Michael Somos, Nov 14 2002 */
-
Vec(1/eta('x+O('x^66))^2) /* Joerg Arndt, Jun 25 2011 */
-
from sympy import npartitions
def A000712(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) # Chai Wah Wu, Sep 25 2023
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(0, 1, 2, 2)
b = EulerTransform(a)
print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020
More terms from Joe Keane (jgk(AT)jgk.org), Nov 17 2001
More terms from Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 15 2004
A122768
Number of combinations which can be taken from the integer partitions of n. Total number of cases in the (n,m)-fragmentation process.
Original entry on oeis.org
0, 1, 3, 7, 15, 29, 54, 95, 163, 270, 439, 696, 1088, 1669, 2530, 3780, 5591, 8173, 11845, 17000, 24215, 34210, 48008, 66895, 92660, 127554, 174651, 237830, 322297, 434625, 583524, 779972, 1038356, 1376787, 1818755, 2393775, 3139812, 4104433, 5348375, 6947545, 8998201, 11620313, 14965126, 19220569
Offset: 0
a(n=4) = 15 because the possible combinations of all five integer partitions of n=4 are: [1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1], [2], [1, 1], [1, 2], [1, 1, 2], [2], [2, 2], [1], [3], [1, 3], [4].
-
a122768 n = a122768_list !! n
a122768_list = 0 : f (tail a000041_list) [1] where
f (p:ps) rs = (sum $ zipWith (*) rs $ tail a000041_list) : f ps (p : rs)
-- Reinhard Zumkeller, Nov 09 2015
-
A122768 := proc(n::integer) local i,j,prttnlst,prttn,ZahlTeile,H; prttnlst:=partition(n); H := NULL; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; ZahlTeile := nops(prttn); for j from 1 to ZahlTeile do H := H,op(choose(prttn,j)); od; od; print(n,H,nops([H])); end proc;
A000712 := proc(n) option remember ; add(combinat[numbpart](k)*combinat[numbpart](n-k),k=0..n) ; end: A000041 := proc(n) combinat[numbpart](n) ; end: A122768 := proc(n::integer) RETURN( A000712(n)-A000041(n)) ; end: for n from 0 to 80 do printf("%d,",A122768(n)) ; od: # R. J. Mathar, Aug 25 2008
# third Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(
k*numtheory[sigma](j)*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n,2)-b(n,1):
seq(a(n), n=0..50); # Alois P. Heinz, Mar 31 2017
-
1/QPochhammer[x]^2 - 1/QPochhammer[x] + O[x]^50 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 05 2017, after Joerg Arndt *)
-
x='x+O('x^66); /* that many terms */
Vec(1/eta(x)^2-1/eta(x)) /* show terms (omitting initial zero) */
/* Joerg Arndt, Jun 21 2011 */
-
from sympy import npartitions
def A122768(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(1,n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) + npartitions(n) if n else 0 # Chai Wah Wu, Sep 25 2023
A000716
Number of partitions of n into parts of 3 kinds.
Original entry on oeis.org
1, 3, 9, 22, 51, 108, 221, 429, 810, 1479, 2640, 4599, 7868, 13209, 21843, 35581, 57222, 90882, 142769, 221910, 341649, 521196, 788460, 1183221, 1762462, 2606604, 3829437, 5590110, 8111346, 11701998, 16790136, 23964594, 34034391, 48104069, 67679109, 94800537, 132230021, 183686994, 254170332
Offset: 0
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
- Moreno, Carlos J., Partitions, congruences and Kac-Moody Lie algebras. Preprint, 37pp., no date. See Table I.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 501 terms from T. D. Noe)
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, 2016, hal-01285685v2.
- Victor J. W. Guo and Jiang Zeng, Two truncated identities of Gauss, arXiv 1205.4340 [math.CO], 2012. - _N. J. A. Sloane_, Oct 10 2012
- Masazumi Honda and Takuya Yoda, String theory, N = 4 SYM and Riemann hypothesis, arXiv:2203.17091 [hep-th], 2022.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 391
- Vladimir P. Kostov, Asymptotic expansions of zeros of a partial theta function, arXiv:1504.00883 [math.CA], 2015.
- Vladimir P. Kostov, Stabilization of the asymptotic expansions of the zeros of a partial theta function, arXiv preprint arXiv:1510.02584 [math.CA], 2015.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, and A. M. Läuchli, Chiral spin liquids in triangular lattice SU(N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.
- N. J. A. Sloane, Transforms
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
-
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*3, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, May 20 2013
-
a[0] = 1; a[n_] := a[n] = 1/n*Sum[3*a[k]*DivisorSigma[1, n-k], {k, 0, n-1}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 03 2014, after Joerg Arndt *)
(1/QPochhammer[q]^3 + O[q]^40)[[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
-
Vec(1/eta('x+O('x^66))^3) \\ Joerg Arndt, Apr 28 2013
-
from functools import lru_cache
from sympy import divisor_sigma
@lru_cache(maxsize=None)
def A000716(n): return sum(A000716(k)*divisor_sigma(n-k) for k in range(n))*3//n if n else 1 # Chai Wah Wu, Sep 25 2023
A286335
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)^k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 2, 0, 1, 4, 6, 6, 2, 0, 1, 5, 10, 13, 9, 3, 0, 1, 6, 15, 24, 24, 14, 4, 0, 1, 7, 21, 40, 51, 42, 22, 5, 0, 1, 8, 28, 62, 95, 100, 73, 32, 6, 0, 1, 9, 36, 91, 162, 206, 190, 120, 46, 8, 0, 1, 10, 45, 128, 259, 384, 425, 344, 192, 66, 10, 0
Offset: 0
A(3,2) = 6 because we have [3], [3'], [2, 1], [2', 1], [2, 1'] and [2', 1'] (partitions of 3 into distinct parts with 2 types of each part).
Also A(3,2) = 6 because we have [3], [3'], [1, 1, 1], [1, 1, 1'], [1, 1', 1'] and [1', 1', 1'] (partitions of 3 into odd parts with 2 types of each part).
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 3, 6, 10, 15, ...
0, 2, 6, 13, 24, 40, ...
0, 2, 9, 24, 51, 95, ...
0, 3, 14, 42, 100, 206, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..n/i)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 29 2019
-
Table[Function[k, SeriesCoefficient[Product[(1 + x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
A008485
Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.
Original entry on oeis.org
1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0
T. Forbes (anthony.d.forbes(AT)googlemail.com)
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
-
a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
-
{a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
-
{a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */
A246935
Number A(n,k) of partitions of n into k sorts of parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 14, 5, 0, 1, 5, 20, 39, 34, 7, 0, 1, 6, 30, 84, 129, 74, 11, 0, 1, 7, 42, 155, 356, 399, 166, 15, 0, 1, 8, 56, 258, 805, 1444, 1245, 350, 22, 0, 1, 9, 72, 399, 1590, 4055, 5876, 3783, 746, 30, 0
Offset: 0
A(2,2) = 6: [2a], [2b], [1a,1a], [1a,1b], [1b,1a], [1b,1b].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 6, 12, 20, 30, 42, 56, ...
0, 3, 14, 39, 84, 155, 258, 399, ...
0, 5, 34, 129, 356, 805, 1590, 2849, ...
0, 7, 74, 399, 1444, 4055, 9582, 19999, ...
0, 11, 166, 1245, 5876, 20455, 57786, 140441, ...
0, 15, 350, 3783, 23604, 102455, 347010, 983535, ...
Columns k=0-10 give:
A000007,
A000041,
A070933,
A242587,
A246936,
A246937,
A246938,
A246939,
A246940,
A246941,
A246942.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)
A067687
Expansion of 1/( 1 - x / Product_{n>=1} (1-x^n) ).
Original entry on oeis.org
1, 1, 2, 5, 12, 29, 69, 165, 393, 937, 2233, 5322, 12683, 30227, 72037, 171680, 409151, 975097, 2323870, 5538294, 13198973, 31456058, 74966710, 178662171, 425791279, 1014754341, 2418382956, 5763538903, 13735781840, 32735391558, 78015643589
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 3, 10, 22, 40, 65, ...
0, 5, 20, 51, 105, ...
0, 7, 36, 108, ...
0, 11, 65, ...
A060642
Triangle read by rows: row n lists number of ordered partitions into k parts of partitions of n.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 22, 21, 8, 1, 11, 43, 59, 36, 10, 1, 15, 80, 144, 124, 55, 12, 1, 22, 141, 321, 362, 225, 78, 14, 1, 30, 240, 669, 944, 765, 370, 105, 16, 1, 42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1, 56, 640, 2511, 5100, 6215, 4848, 2478, 824, 171, 20, 1
Offset: 1
Table begins:
1;
2, 1;
3, 4, 1;
5, 10, 6, 1;
7, 22, 21, 8, 1;
11, 43, 59, 36, 10, 1;
15, 80, 144, 124, 55, 12, 1;
22, 141, 321, 362, 225, 78, 14, 1;
30, 240, 669, 944, 765, 370, 105, 16, 1;
42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1;
...
For n=4 there are 5 partitions of 4, namely 4, 31, 22, 211, 11111. There are 5 ways to pick 1 of them; 10 ways to partition one of them into 2 ordered parts: 3,1; 1,3; 2,2; 21,1; 1,21; 2,11; 11,2; 111,1; 1,111; 11,11; 6 ways to partition one of them into 3 ordered parts: 2,1,1; 1,2,1; 1,1,2; 11,1,1; 1,11,1; 1,1,11; and one way to partition one of them into 4 ordered parts: 1,1,1,1. So row 4 is 5,10,6,1.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma](j), j=1..n)/n)
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 12 2015
# Uses function PMatrix from A357368. Adds row and column for n, k = 0.
PMatrix(10, combinat:-numbpart); # Peter Luschny, Oct 07 2022
-
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[ Table[ T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
A255961
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j*k).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 13, 0, 1, 5, 18, 37, 47, 24, 0, 1, 6, 25, 64, 111, 110, 48, 0, 1, 7, 33, 100, 215, 303, 258, 86, 0, 1, 8, 42, 146, 370, 660, 804, 568, 160, 0, 1, 9, 52, 203, 588, 1251, 1938, 2022, 1237, 282, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 3, 7, 12, 18, 25, 33, 42, ...
0, 6, 18, 37, 64, 100, 146, 203, ...
0, 13, 47, 111, 215, 370, 588, 882, ...
0, 24, 110, 303, 660, 1251, 2160, 3486, ...
0, 48, 258, 804, 1938, 4005, 7459, 12880, ...
0, 86, 568, 2022, 5400, 12150, 24354, 44885, ...
Columns k=0-10 give:
A000007,
A000219,
A161870,
A255610,
A255611,
A255612,
A255613,
A255614,
A193427,
A316461,
A316462.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 02 2016, after Alois P. Heinz *)
Showing 1-10 of 41 results.
Comments