A119443
Distribution of A060642 in Abramowitz and Stegun order.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 5, 6, 4, 6, 1, 7, 10, 12, 9, 12, 8, 1, 11, 14, 20, 9, 15, 36, 8, 12, 24, 10, 1, 15, 22, 28, 30, 21, 60, 27, 36, 20, 72, 32, 15, 40, 12, 1, 22, 30, 44, 42, 25, 33, 84, 90, 60, 54, 28, 120, 54, 144, 16, 25, 120, 80, 18, 60, 14, 1
Offset: 1
1;
2,1;
3,4,1;
5,6,4,6,1;
7,10,12,9,12,8,1;
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
A000203
a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).
Original entry on oeis.org
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1
For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
- H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
- Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
- Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
- M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
- A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
- G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
- Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 20000 terms from N. J. A. Sloane)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- B. Apostol and L. Petrescu, Extremal Orders of Certain Functions Associated with Regular Integers (mod n), Journal of Integer Sequences, 2013, # 13.7.5.
- Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
- M. Baake and U. Grimm, Quasicrystalline combinatorics
- Henry Bottomley, Illustration of initial terms
- C. K. Caldwell, The Prime Glossary, sigma function
- Imanuel Chen and Michael Z. Spivey, Integral Generalized Binomial Coefficients of Multiplicative Functions, Preprint 2015; Summer Research Paper 238, Univ. Puget Sound.
- D. Christopher and T. Nadu, Partitions with Fixed Number of Sizes, Journal of Integer Sequences, 15 (2015), #15.11.5.
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012. - _N. J. A. Sloane_, Dec 25 2012
- R. L. Duncan, Note on the Divisors of a Number, The American Mathematical Monthly, 68(4), 356-359, (1961).
- Jason Earls, The Smarandache sum of composites between factors function, in Smarandache Notions Journal (2004), Vol. 14.1, page 243.
- L. Euler, Discovery of a most extraordinary law of numbers, relating to the sum of their divisors
- L. Euler, Observatio de summis divisorum
- L. Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009.
- J. A. Ewell, Recurrences for the sum of divisors, Proc. Amer. Math. Soc. 64 (2) 1977.
- Farideh Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors ..., J. Integer Seqs., Vol. 6, 2003.
- Johan Gielis and Ilia Tavkhelidze, The general case of cutting of GML surfaces and bodies, arXiv:1904.01414 [math.GM], 2019.
- J. W. L. Glaisher, On the function chi(n), Quarterly Journal of Pure and Applied Mathematics, 20 (1884), 97-167.
- J. W. L. Glaisher, On the function chi(n), Quarterly Journal of Pure and Applied Mathematics, 20 (1884), 97-167. [Annotated scanned copy]
- M. J. Grady, A group theoretic approach to a famous partition formula, Amer. Math. Monthly, 112 (No. 7, 2005), 645-651.
- Masazumi Honda and Takuya Yoda, String theory, N = 4 SYM and Riemann hypothesis, arXiv:2203.17091 [hep-th], 2022.
- Douglas E. Iannucci, On sums of the small divisors of a natural number, arXiv:1910.11835 [math.NT], 2019.
- Antti Karttunen, Scheme program for computing this sequence.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113.
- M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math.CO/0503436, 2005.
- K. Matthews, Factorizing n and calculating phi(n),omega(n),d(n),sigma(n) and mu(n)
- Walter Nissen, Abundancy : Some Resources
- P. Pollack and C. Pomerance, Some problems of Erdős on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B 3 (2016), 1-26; errata.
- Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp. 83 (2014), 1903-1913.
- John S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Act. Cryst. (1992) A48, 500-508. - _N. J. A. Sloane_, Mar 14 2009
- John S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices II, Acta Cryst. A49 (1993), 293-300. - _N. J. A. Sloane_, Mar 14 2009
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 1]. - _N. J. A. Sloane_, Feb 23 2009
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 3.
- Eric Weisstein's World of Mathematics, Divisor Function
- Wikipedia, Divisor function
- Index entries for sequences related to sublattices
- Index entries for sequences related to sigma(n)
- Index entries for "core" sequences
sigma_i (i=0..25):
A000005,
A000203,
A001157,
A001158,
A001159,
A001160,
A013954,
A013955,
A013956,
A013957,
A013958,
A013959,
A013960,
A013961,
A013962,
A013963,
A013964,
A013965,
A013966,
A013967,
A013968,
A013969,
A013970,
A013971,
A013972,
A281959.
Cf.
A144736,
A158951,
A158902,
A174740,
A147843,
A001158,
A001160,
A001065,
A002192,
A001001,
A001615 (primitive sublattices),
A039653,
A088580,
A074400,
A083728,
A006352,
A002659,
A083238,
A000593,
A050449,
A050452,
A051731,
A027748,
A124010,
A069192,
A057641,
A001318.
Cf. also
A034448 (sum of unitary divisors).
Cf.
A007955 (products of divisors).
-
A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
-
a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, May 07 2012
-
[SumOfDivisors(n): n in [1..70]];
-
[DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
-
with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
-
Table[ DivisorSigma[1, n], {n, 100}]
a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
-
makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
-
numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
-
{a(n) = if( n<1, 0, sigma(n))};
-
{a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
-
{a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
-
max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
-
from sympy import divisor_sigma
def a(n): return divisor_sigma(n, 1)
print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
-
from math import prod
from sympy import factorint
def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
(APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
-
[sigma(n, 1) for n in range(1, 71)] # Zerinvary Lajos, Jun 04 2009
-
(definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
-
(define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
A055887
Number of ordered partitions of partitions.
Original entry on oeis.org
1, 1, 3, 8, 22, 59, 160, 431, 1164, 3140, 8474, 22864, 61697, 166476, 449210, 1212113, 3270684, 8825376, 23813776, 64257396, 173387612, 467856828, 1262431711, 3406456212, 9191739970, 24802339472, 66924874539, 180585336876, 487278670744, 1314838220172
Offset: 0
The a(4) = 22 chains of multisets, where notation x-y means "y is a submultiset of x", are: (o-o-o-o) (oo-o-o) (oo-oo) (ooo-o) (oooo) (oe-o-o) (ooe-o) (oooe) (oe-oe) (ooe-e) (oee-o) (ooee) (oei-o) (ooei) (oe-e-e) (oee-e) (oeee) (oei-e) (oeei) (oei-i) (oeii) (oeis).
From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose an integer partition of each part of an integer composition of n. The a(0) = 1 through a(3) = 8 choices are:
() ((1)) ((2)) ((3))
((11)) ((21))
((1)(1)) ((111))
((1)(2))
((2)(1))
((1)(11))
((11)(1))
((1)(1)(1))
(End)
A011782 counts integer compositions.
A072233 counts partitions by sum and length.
-
with(combstruct); SeqSetSetU := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
P := (x) -> product( 1/(1-x^k), k=1..20 ) - 1; F := (x) -> series( 1/(1-P(x)) - 1, x, 21 ); # F(x) is g.f. for this sequence # Warren D. Smith, Jan 28 2002
A055887rec:= proc(n::integer) local k; option remember; with(combinat): if n = 0 then 1 else add(numbpart(k) *procname(n - k), k=1..n); end if; end proc: seq (A055887rec(n), n=0..10); # Thomas Wieder, Nov 26 2007
-
a = 1/Product[(1 - x^k), {k, 1, \[Infinity]}] - 1; CoefficientList[Series[1/(1 - a), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 23 2010 *)
(1/(2 - 1/QPochhammer[x]) + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
Table[Sum[Times@@PartitionsP/@c,{c,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}] (* Gus Wiseman, Jul 31 2022 *)
-
Vec(1/(2-1/eta(x+O(x^66)))) \\ Joerg Arndt, Sep 30 2012
A144064
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->k).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 5, 0, 1, 5, 14, 22, 20, 7, 0, 1, 6, 20, 40, 51, 36, 11, 0, 1, 7, 27, 65, 105, 108, 65, 15, 0, 1, 8, 35, 98, 190, 252, 221, 110, 22, 0, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 0, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 5, 9, 14, 20, ...
0, 3, 10, 22, 40, 65, ...
0, 5, 20, 51, 105, 190, ...
0, 7, 36, 108, 252, 506, ...
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-44. (Annotated scanned copy)
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-48. See Table 1.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- N. J. A. Sloane, Transforms
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Columns k=0-24 give:
A000007,
A000041,
A000712,
A000716,
A023003,
A023004,
A023005,
A023006,
A023007,
A023008,
A023009,
A023010,
A005758,
A023011,
A023012,
A023013,
A023014,
A023015,
A023016,
A023017,
A023018,
A023019,
A023020,
A023021,
A006922.
-
# DedekindEta is defined in A000594.
A144064Column(k, len) = DedekindEta(len, -k)
for n in 0:8 A144064Column(n, 6) |> println end # Peter Luschny, Mar 10 2018
-
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k)(n): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
a[0, ] = 1; a[, 0] = 0; a[n_, k_] := SeriesCoefficient[ Product[1/(1 - x^j)^k, {j, 1, n}], {x, 0, n}]; Table[a[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]} ]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[k&][n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
-
Mat(apply( {A144064_col(k,nMax=9)=Col(1/eta('x+O('x^nMax))^k,nMax)}, [0..9])) \\ M. F. Hasler, Aug 04 2024
A048574
Self-convolution of 1 2 3 5 7 11 15 22 30 42 56 77 ... (A000041).
Original entry on oeis.org
1, 4, 10, 22, 43, 80, 141, 240, 397, 640, 1011, 1568, 2395, 3604, 5360, 7876, 11460, 16510, 23588, 33418, 47006, 65640, 91085, 125596, 172215, 234820, 318579, 430060, 577920, 773130, 1030007, 1366644, 1806445, 2378892, 3121835, 4082796
Offset: 2
a(4) = 22 because (1,2,3,5)*(5,3,2,1) = 5 + 6 + 6 + 5 = 22
-
a048574 n = a048574_list !! (n-2)
a048574_list = f (drop 2 a000041_list) [1] where
f (p:ps) rs = (sum $ zipWith (*) rs $ tail a000041_list) : f ps (p : rs)
-- Reinhard Zumkeller, Nov 09 2015
-
spec := [S,{C=Sequence(Z,1 <= card),B=Set(C,1 <= card),S=Prod(B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); # Franklin T. Adams-Watters, Feb 08 2006
# second Maple program:
a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]):
seq(a(n), n=2..40); # Alois P. Heinz, May 26 2018
-
a[n_] := First[ ListConvolve[ pp = Array[ PartitionsP, n], pp]]; Table[ a[n], {n, 1, 36}] (* Jean-François Alcover, Oct 21 2011 *)
Table[ListConvolve[PartitionsP[Range[n]],PartitionsP[Range[n]]],{n,40}]// Flatten (* Harvey P. Dale, Oct 29 2020 *)
-
a(n) = sum(k=1, n-1, numbpart(k)*numbpart(n-k)); \\ Michel Marcus, Dec 11 2016
More terms from Larry Reeves (larryr(AT)acm.org), Sep 29 2000
A261719
Number T(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the partition; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 3, 12, 10, 0, 5, 40, 81, 47, 0, 7, 104, 396, 544, 246, 0, 11, 279, 1751, 4232, 4350, 1602, 0, 15, 654, 6528, 25100, 44475, 36744, 11481, 0, 22, 1577, 23892, 136516, 369675, 512787, 352793, 95503, 0, 30, 3560, 80979, 666800, 2603670, 5413842, 6170486, 3641992, 871030
Offset: 0
A(3,2) = 12: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a.
Triangle T(n,k) begins:
1
0, 1;
0, 2, 3;
0, 3, 12, 10;
0, 5, 40, 81, 47;
0, 7, 104, 396, 544, 246;
0, 11, 279, 1751, 4232, 4350, 1602;
0, 15, 654, 6528, 25100, 44475, 36744, 11481;
0, 22, 1577, 23892, 136516, 369675, 512787, 352793, 95503;
...
Columns k=0-10 give:
A000007,
A000041 (for n>0),
A293366,
A293367,
A293368,
A293369,
A293370,
A293371,
A293372,
A293373,
A293374.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 21 2017, translated from Maple *)
A308680
Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1
Offset: 0
T(4,1) = 2: 3a1a, 4a.
T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b.
T(4,4) = 1: 1a1b1c1d.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 2, 5, 3, 1;
0, 3, 8, 9, 4, 1;
0, 4, 14, 19, 14, 5, 1;
0, 5, 22, 39, 36, 20, 6, 1;
0, 6, 34, 72, 85, 60, 27, 7, 1;
0, 8, 50, 128, 180, 160, 92, 35, 8, 1;
0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1;
...
Columns k=0-10 give:
A000007,
A000009 (for n>0),
A327380,
A327381,
A327382,
A327383,
A327384,
A327385,
A327386,
A327387,
A327388.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 31 2021
# Uses function PMatrix from A357368.
PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
A341221
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^3.
Original entry on oeis.org
1, 6, 21, 59, 144, 321, 669, 1323, 2511, 4604, 8202, 14253, 24241, 40449, 66363, 107234, 170910, 269004, 418566, 644436, 982536, 1484482, 2223942, 3305484, 4876620, 7144455, 10398123, 15039564, 21624678, 30919323, 43973708, 62222844, 87619212, 122810585
Offset: 3
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..36); # Alois P. Heinz, Feb 07 2021
-
nmax = 36; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
A341222
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^4.
Original entry on oeis.org
1, 8, 36, 124, 362, 944, 2266, 5100, 10903, 22340, 44168, 84692, 158137, 288452, 515344, 903740, 1558465, 2646820, 4432964, 7329916, 11977507, 19358524, 30970444, 49077936, 77081679, 120054268, 185514428, 284540060, 433360308, 655622392, 985604644, 1472751228
Offset: 4
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..35); # Alois P. Heinz, Feb 07 2021
-
nmax = 35; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &
A341223
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^5.
Original entry on oeis.org
1, 10, 55, 225, 765, 2287, 6215, 15680, 37265, 84300, 182933, 383070, 777705, 1536490, 2963120, 5592060, 10349465, 18817760, 33665870, 59341785, 103176877, 177131330, 300530125, 504318530, 837632700, 1377874861, 2246061540, 3630059510, 5819556060, 9258393655, 14622472250
Offset: 5
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 5):
seq(a(n), n=5..35); # Alois P. Heinz, Feb 07 2021
-
nmax = 35; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^5, {x, 0, nmax}], x] // Drop[#, 5] &
Showing 1-10 of 21 results.
Comments