cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: William J. Keith

William J. Keith's wiki page.

William J. Keith has authored 36 sequences. Here are the ten most recent ones:

A366920 a(n) is the number times a Dyck path in an m X m box of any size has area n, counted to the lower right.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 3, 3, 3, 2, 2, 5, 6, 7, 7, 5, 6, 8, 12, 15, 18, 16, 16, 15, 17, 24, 32, 40, 43, 45, 45, 42, 44, 53, 69, 87, 104, 115, 126, 125, 124, 124, 136, 160, 198, 240, 282, 321, 345, 360, 365, 367, 382, 417, 482, 574, 682, 791, 895, 976
Offset: 0

Author

William J. Keith, Oct 28 2023

Keywords

Comments

A Dyck path in an m X m grid is a set of up steps U and right steps R from the lower left corner to the upper right corner, staying weakly above the diagonal.
For this statistic, count the boxes below and to the right of the path.
The first time an area appears in two different squares is at size 15, which appears in the 4 X 4 box below UUURURRR and in the 5 X 5 box below URURURURUR.

Examples

			The 0 X 0 box yields the trivial (empty) path of area 0.
The 1 X 1 box yields one Dyck path of area 1 (UR).
The 2 X 2 box yields one Dyck path each of area 3 (URUR) and 4 (UURR).
The 3 X 3 box yields one Dyck path of area 6 (URURUR), two of area 7 (UURRUR and URUURR), and one each of area 8 (UURURR) and 9 (UUURRR).
		

Crossrefs

Formula

G.f.: 1 + q + q^3 + q^4 + q^6 + 2q^7 + ...
To construct the g.f., take A(x,q) as defined in A227543, and replace each instance of x^k with q^(k*(k+1)/2).

Extensions

a(45)-a(65) from Alois P. Heinz, Oct 29 2023

A298411 Coefficients of q^(-1/24)*eta(4q)^(1/2).

Original entry on oeis.org

1, -2, -10, -20, -90, 132, -836, 6040, 2310, 60180, 180308, 1662568, -2995620, 24401320, 44072120, -102437328, 19390406, 2649221300, -10584460060, 14475802440, -228570333836, -815899620616, 2088529753800, -5590702681520, -100828534100580, -172013432412024
Offset: 0

Author

William J. Keith, Jan 18 2018

Keywords

Comments

The q^(kn) term of any single factor of the product (1-(4q)^k)^(1/2) is (-2)*A000108(n-1). Hence these numbers are related to the Catalan numbers A000108 by a partition-based convolution.
Sequence appears to be positive and negative roughly half the time.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/2, g(n) = 4^n. - Seiichi Manyama, Apr 20 2018

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(1/b): A010815 (b=1), this sequence (b=2), A303152 (b=3), A303153 (b=4), A303154 (b=5).

Programs

  • Mathematica
    Series[Product[(1 - (4 q)^k)^(1/2), {k, 1, 100}], {q, 0, 100}]
  • PARI
    q='q+O('q^99); Vec(eta(4*q)^(1/2)) \\ Altug Alkan, Apr 20 2018

Formula

G.f.: Product_{k>=1} (1 - (4x)^k)^(1/2).

A253926 a(n) is the excess of the number of Collatz permutations of length n (with first index 15) over the n-th Fibonacci number.

Original entry on oeis.org

1, 2, 3, 3, 4, 6, 7, 9, 12, 15, 19, 24, 30, 39, 49, 61, 77, 96
Offset: 15

Author

William J. Keith, Jan 19 2015

Keywords

Comments

A permutation is Collatz if for some n it is the sequence of ranks of terms prior to a power of 2 generated by the Collatz function C(n) = n/2 if n even, (3n+1) if n odd. For instance, iteration of the Collatz function on 12 generates 12, 6, 3, 10, 5, which is then followed by 16, so (5,3,1,4,2) is Collatz. Among n = 1 to 14, the number of Collatz permutations is the n-th Fibonacci number; thereafter, there is an increasing excess. This sequence counts the excess.

Crossrefs

A000045, the Fibonacci numbers, gives the number of Collatz permutations for n <= 14.

A242168 Decimal expansion of the integral of the q-Pochhammer symbol (reciprocal of the partition function) over the real interval -1 to 1.

Original entry on oeis.org

1, 2, 8, 8, 3, 0, 0, 8, 8, 8, 6, 7, 3, 9, 2, 1, 2, 3, 0, 1, 8, 0, 9, 0, 1, 4, 9, 3, 9, 3, 0, 9, 6, 3, 4, 4, 4, 2, 2, 5, 8, 7, 3, 8, 0, 7, 1, 3, 8, 7, 9, 6, 1, 9, 5, 0, 3, 2, 0, 1, 4, 9, 4, 2, 6, 9, 8, 6, 4, 4, 2, 4, 1, 8, 5, 2, 0, 4, 9, 7, 8, 8, 7, 6, 8, 2, 0, 9, 3, 4, 4, 4, 4, 1, 1, 1, 3, 3, 9, 8, 1, 3, 6, 3, 3
Offset: 1

Author

William J. Keith, May 05 2014

Keywords

Comments

As a function, the q-Pochhammer symbol is an irregularly left-skewed bell curve. It has limiting value 0 at -1 and 1, and its maximum is at -0.411248... (decimal value given by A143441).

Examples

			1.2883008886739212301809014939309634442258738...
		

Crossrefs

Programs

  • Maple
    evalf(4*sqrt(3/23)*Pi * (2*sinh(sqrt(23)*Pi/6) + sqrt(2)*sinh(sqrt(23)*Pi/4)) / (2*cosh(sqrt(23)*Pi/3)-1), 120); # Vaclav Kotesovec, Jun 02 2015
  • Mathematica
    NIntegrate[QPochhammer[q, q], {q, -1, 1}, WorkingPrecision -> 45]
    RealDigits[4*Sqrt[3/23]*Pi*(2*Sinh[Sqrt[23]*Pi/6] + Sqrt[2]*Sinh[Sqrt[23]*Pi/4]) / (2*Cosh[Sqrt[23]*Pi/3]-1), 10, 105][[1]] (* Vaclav Kotesovec, Jun 02 2015 *)
  • PARI
    eta2(q)=if(q==0,1,my(p=log(10^-38)/log(abs(q)),N=floor(sqrt(2*p/3)));sum(n=-N,N,(-1)^n*q^((3*n^2-n)/2),0.))
    intnum(q=-.99999,.99999,eta2(q)) \\ Bill Allombert, May 06 2014

Formula

Equals 4*sqrt(3/23)*Pi * (2*sinh(sqrt(23)*Pi/6) + sqrt(2)*sinh(sqrt(23)*Pi/4)) / (2*cosh(sqrt(23)*Pi/3)-1). - Vaclav Kotesovec, Jun 02 2015

Extensions

More digits from Vaclav Kotesovec, Jun 02 2015

A239445 Values n at which ratios of successive partition numbers approach 1 closer than the reciprocal of a whole number.

Original entry on oeis.org

2, 3, 11, 25, 39, 57, 78, 102, 130, 161, 195, 232, 273, 317, 365, 415, 469, 526, 587, 651, 718, 788, 862, 939, 1019, 1103, 1189, 1280, 1373, 1470, 1570, 1673, 1779, 1889, 2002, 2119, 2239, 2362, 2488, 2618, 2750, 2887, 3026, 3169, 3315, 3464, 3617, 3773, 3932, 4094, 4260, 4429, 4602, 4777, 4956
Offset: 1

Author

William J. Keith, Mar 18 2014

Keywords

Comments

The ratios of successive partition numbers p(n) / p(n-1) approach 1 monotonically, for n>1. a(k) gives the n for which p(n)/p(n+1) first equals or is less than 1+1/k.

Examples

			p(2)=2 and p(1)=1, so a(1) = 2, since p(2)/p(1) = 1+1/1.
p(3)=3 and p(2)=2, so a(2)=3, since p(3)/p(2) = 1+1/2.
p(11)=56 and p(10) = 42, so a(3) = 11, since p(11)/p(10) = 1+1/3.
		

Crossrefs

Cf. A000041 (Partition numbers), A013661 (Pi^2 / 6).

Programs

  • Mathematica
    AddDenom = 2;
    Breaks = {};
    For[n = 2, n < 10000, n++,
    If[PartitionsP[n]/PartitionsP[n - 1] <= (1 + (1/AddDenom)),
      AppendTo[Breaks, n]; ADH = AddDenom + 1; AddDenom = ADH]
    ]
    Breaks

Formula

Empirical quadratic fit to first 78 terms: ak^2 + bk + c, a ~ 1.64466, b ~ -0.3287, c ~ -0.66.
Leading term appears to approach 1.644... k^2, where the constant is zeta(2), Pi^2/6. This can probably be rigorously derived from the asymptotic expansion of the partition function, p(n) ~ 1/(4 n sqrt(3)) exp( Pi sqrt(2n/3)).

A238752 Number of nonisomorphic partial 1-differential posets up to rank n.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 35, 643, 44606, 29199636
Offset: 1

Author

William J. Keith, Mar 04 2014

Keywords

Examples

			For n<=4, label nodes with the partitions of n for convenience.
At n=5, the two possible posets are the Young poset (nodes and covering relations are the partitions of 5) and the poset constructed by covering the partitions (31), (22) and (211) with a common element, then giving each of those partitions another cover, and leaving all other nodes the same.
		

A236680 Dimension of the space of spinors in n-dimensional real space.

Original entry on oeis.org

1, 2, 4, 4, 4, 4, 8, 8, 16, 32, 64, 64, 64, 64, 128, 128, 256, 512, 1024, 1024, 1024, 1024, 2048, 2048, 4096, 8192, 16384, 16384, 16384, 16384, 32768, 32768, 65536, 131072, 262144, 262144, 262144, 262144, 524288, 524288, 1048576, 2097152, 4194304
Offset: 1

Author

Keywords

Comments

a(n) = n only for n = 1, 2, 4, 8. These correspond to the four normed division algebras: the real numbers, the complex numbers, the quaternions, and the octonions.
All terms are powers of 2: a(n) = 2^A236916(n-1).

Crossrefs

Cf. A236916.
Closely related to A034583 and A034584.

Programs

  • Mathematica
    LinearRecurrence[{2,-2,0,4,-8,8},{1,2,4,4,4,4},50] (* Harvey P. Dale, May 05 2019 *)
  • PARI
    Vec(x*(1+2*x^2+4*x^5)/((1-2*x^2)*(1+2*x^2)*(1-2*x+2*x^2)) + O(x^100)) \\ Colin Barker, Jan 30 2014

Formula

a(n) = 16*a(n-8) = 2*a(n-1) - 2*a(n-2) + 4*a(n-4) - 8*a(n-5) + 8*a(n-6).
G.f.: x*(1+2*x^2+4*x^5)/((1-2*x^2)*(1+2*x^2)*(1-2*x+2*x^2)). - Colin Barker, Jan 30 2014

A234937 Triangle read by rows of coefficients of polynomials generated by the Han/Nekrasov-Okounkov formula.

Original entry on oeis.org

1, 1, -1, 4, -5, 1, 18, -29, 12, -1, 120, -218, 119, -22, 1, 840, -1814, 1285, -345, 35, -1, 7920, -18144, 14674, -5205, 805, -51, 1, 75600, -196356, 185080, -79219, 16450, -1624, 70, -1, 887040, -2427312, 2515036, -1258628, 324569, -43568, 2954, -92, 1
Offset: 0

Author

William J. Keith, Jan 01 2014

Keywords

Comments

Coefficients of the polynomials p_n(b) defined by Product_{k>0} (1-q^k)^(b-1) = Sum n! p_n(b) q^n.
Each row is length 1+n, starting from n=0, and consists of the coefficients of one of the p_n(b).
A210590 is an unsigned version using the form preferred by Nekrasov and Okounkov. This is the form for which Guo-Niu Han's reference below gives the hooklength formula:
p_n(b) = Sum_{lambda partitioning n} Product_{h_{ij} in lambda} (1-b/(h_{ij}^2)).
Coefficients reduced mod 5 are those of 2 times Pascal's triangle and an alternating sign. Other primes have slightly more complex reduction behavior. See second link.
Lehmer's conjecture on the tau function states that the evaluation at b=25 (A000594) is never 0.
The general diagonal and column are probably of combinatorial interest.

Examples

			The coefficient of q^3 in the indeterminate power is (1/6) (18-29b+12b^2-b^3).
		

Crossrefs

Row entries sum to 0.
A210590 is the unsigned version.
Starting from row 0: final entry of row n, (-1)^n (A033999).
From row 1: next-to-last entry of row n, (-1)^(n-1) * n(3n-1)/2 (signed version of A000326).
First entry of row n, n! * p(n) (A053529).
Second entry of row n, -1 * n! * (sum of reciprocals of all parts in partitions of n) (negatives of A057623).
(Sum of absolute values of row entries)/n!: A000712.
Evaluations at various powers of b, divided by n!, enumerate multipartitions or powers of the eta function. Some special cases that appear in the OEIS:
b=0: A000041, the partition numbers,
b=2: A010815, from Euler's Pentagonal Number Theorem,
b=-1: A000712, partitions into 2 colors,
b=-11: A005758, reciprocal of the square root of the tau function,
b=-23: A006922, reciprocal of the tau function,
b=13: A000735, square root of the tau function,
b=25: A000594, Ramanujan's tau function.

Programs

  • Mathematica
    nn=10;
    Clear[b]; PolyTable = Table[0, {n, 1, nn}];
    PolyTable[[1]]=1-b;
    For[n = 2, n <= nn, n++,
    PolyTable[[n]] = Simplify[(((n - 1)!)*(b - 1))*(Sum[
           PolyTable[[n - m]]*(-1*DivisorSigma[1, m]/((n - m)!)), {m, 1,
            n - 1}] + (-1*DivisorSigma[1, n]))]];
    LongTable = Table[Table[
       Which[k == 0, PartitionsP[n]*n!, k > 0,
        Coefficient[Expand[PolyTable[[n]]], b^k]], {k, 0, n}], {n, 1, nn}];
    Flatten[PrependTo[LongTable,1]]

Formula

E.g.f.: Product_{k>0} (1-q^k)^(b-1).
Recurrence: With p_0(b) = 1, p_n(b) = (n-1)!*(b-1)*Sum_{m=1..n} -sigma(m)*p_{n-m}(b) / (n-m)!, sigma being the divisor function.

A228117 Number of partitions of n that have hookset {1,2,...,k} for some k.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 6, 7, 9, 10, 16, 14, 23, 24, 33, 33, 50, 50, 71, 75, 101, 103, 146, 151, 201, 211, 280, 292, 389, 409, 519, 573, 707, 765, 960, 1043, 1276, 1393, 1704, 1870, 2258, 2483, 2970, 3281, 3920, 4290, 5101, 5659, 6640, 7318, 8628, 9506, 11081
Offset: 0

Author

William J. Keith, Aug 10 2013

Keywords

Comments

It appears to be the case that the difference between entry a(2n-1) and a(2n) is substantially less than the difference between a(2n) and a(2n+1), after a few initial exceptions.

Examples

			a(7) = 6, counting the partitions (7), (43), (331), (322), (2221), and (111111).  The hooklengths of (7) are {1,2,3,4,5,6,7}, and the hooklengths of (322) are {1,1,2,2,3,4,5}.
		

Crossrefs

Cf. A158291, the number of partitions which have hookset {1,2,...,n}, not counting multiplicities.

Programs

  • Maple
    h:= proc(l) local n, s; n:=nops(l); s:= {seq(seq(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)};
           `if`(s={$1..max(s[], 0)}, 1, 0)
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0,
                 g(n, i-1, l)+`if`(i>n, 0, g(n-i, i, [l[], i])))):
    a:= n-> g(n$2, []):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 12 2013
  • Mathematica
    << "Combinatorica`"
    HookSet[Lambda_] := Module[{i, j, k, HookHolder},
      HookHolder = {};
      HS = {};
      For[i = 1, i < Length[Lambda] + 1, i++,
       For[j = 1, j < Lambda[[i]] + 1, j++,
        CurrentHook =
         Lambda[[i]] - j + TransposePartition[Lambda][[j]] - i + 1;
        If[! MemberQ[HS, CurrentHook],
         HookHolder = Append[HS, CurrentHook]; HS = HookHolder]
        ]
       ];
      HookHolder = Sort[HS];
      HS = HookHolder;
      Return[HS]]
    For[i = 1, i < 31, i++,
    For[j = 1, j < PartitionsP[i] + 1, j++,
      CurrSet=HookSet[Partitions[i][[j]]];
      If[CurrSet == Table[i,{i,1,Length[CurrSet]}],
       SGFHolder = SegGenFn + q^i;
       SegGenFn = SGFHolder]
      ]
    ]
    (* second program: *)
    h[l_] := Module[{n, s}, n = Length[l]; s = Table[Table[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] // Flatten // Union; If[s == Range[Max[Append[s, 0]]], 1, 0]]; g[n_, i_, l_] := g[n, i, l] = If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i<1, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i, Append[l, i]]]]]; a[n_] := g[n, n, {}]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 60}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)

Extensions

a(31)-a(53) from Alois P. Heinz, Aug 12 2013

A224338 Number of idempotent 7 X 7 0..n matrices of rank 6.

Original entry on oeis.org

889, 10199, 57337, 218743, 653177, 1647079, 3670009, 7440167, 13999993, 24801847, 41803769, 67575319, 105413497, 159468743, 234881017, 337925959, 476171129, 658642327, 895999993, 1200725687, 1587318649, 2072502439, 2675441657
Offset: 1

Author

R. H. Hardin, formula via M. F. Hasler, William J. Keith, and Rob Pratt in the Sequence Fans Mailing List, Apr 03 2013

Keywords

Comments

Row 7 of A224333.

Examples

			Some solutions for n=1
..1..0..0..0..0..0..0....1..0..0..0..0..0..0....1..0..0..1..0..0..0
..0..1..0..0..0..0..0....0..1..0..0..0..1..0....0..1..0..0..0..0..0
..0..0..1..0..0..0..0....0..0..1..0..0..1..0....0..0..1..0..0..0..0
..0..0..0..0..0..1..1....0..0..0..1..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..1..0..0....0..0..0..0..1..1..0....0..0..0..1..1..0..0
..0..0..0..0..0..1..0....0..0..0..0..0..0..0....0..0..0..0..0..1..0
..0..0..0..0..0..0..1....0..0..0..0..0..1..1....0..0..0..1..0..0..1
		

Crossrefs

Cf. A224333.

Programs

  • PARI
    Vec(-7*x*(x^6-8*x^5+29*x^4+64*x^3+659*x^2+568*x+127)/(x-1)^7 + O(x^100)) \\ Colin Barker, Sep 20 2014

Formula

a(n) = 14*n^6 + 84*n^5 + 210*n^4 + 280*n^3 + 210*n^2 + 84*n + 7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Colin Barker, Sep 20 2014
G.f.: -7*x*(x^6-8*x^5+29*x^4+64*x^3+659*x^2+568*x+127) / (x-1)^7. - Colin Barker, Sep 20 2014