cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A210590 Triangle of numbers generated by the Nekrasov-Okounkov formula.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 18, 29, 12, 1, 120, 218, 119, 22, 1, 840, 1814, 1285, 345, 35, 1, 7920, 18144, 14674, 5205, 805, 51, 1, 75600, 196356, 185080, 79219, 16450, 1624, 70, 1, 887040, 2427312, 2515036, 1258628, 324569, 43568, 2954, 92, 1, 10886400, 32304240, 37012572, 21034376, 6431733, 1088409, 101178, 4974, 117, 1
Offset: 0

Views

Author

Wouter Meeussen, Mar 24 2012

Keywords

Comments

Row sums are A000712, alternating sign row sums are zero (except for first row); application of the Nekrasov-Okounkov formula; see A138782.

Examples

			Table starts as:
     1;
     1,     1;
     4,     5,     1;
    18,    29,    12,    1;
   120,   218,   119,   22,   1;
   840,  1814,  1285,  345,  35,  1;
  7920, 18144, 14674, 5205, 805, 51,  1;
  ...
		

Crossrefs

T(2n,n) gives A338755.

Programs

  • Mathematica
    w=9; MapIndexed[ CoefficientList[#1,t] Tr[#2-1]! &, CoefficientList[Series[Product[(1-x^i)^(-1-t), {i,w}], {x,0,w}], x]];
    or alternatively:
    CoefficientList[#, t] & /@ Table[1/n! Tr[(NumberOfTableaux[#1]^2 Apply[Times, t + Flatten[hooklength[#1]]^2] &) /@ Partitions[n]], {n,0,9}]
    or alternatively:
    Table[1/n!Tr[NumberOfTableaux[#]^2 f[ Flatten[hooklength[#]]^2,e,k,n ]&/@ Partitions[n] ],{n,0,9},{k,0,n}]
    with e and f defined as:
    e[n_,v_]:= Tr[Times @@@ Select[Subsets[Table[Subscript[x,j],{j,v}]],Length[#]==n&]];
    f[li_List,fun_,par_,k_]:=fun[par,k]/.Thread[Array[Subscript[x,#1]&,Length[li]]->li];

Formula

E.g.f.: Product_{i=1..n} (1 - x^i)^(-1 - t).

A338755 Central coefficients of number triangle A210590.

Original entry on oeis.org

1, 5, 119, 5205, 324569, 26519745, 2681170547, 323104570789, 45224035123553, 7211322045457101, 1290620989042420815, 256193650031596282005, 55863607060241676345961, 13273922770286234753307065, 3413846723448521483558054235, 944832714523233697801280445525, 280003865538498845896076940256065
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2020

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = my(t='t); (2*n)!*polcoef(polcoef(prod(k=1, 2*n, (1-x^k+x*O(x^(2*n)))^(-1-t)), 2*n), n)}
    
  • PARI
    {a(n) = my(t='t); if(n==0, 1, (2*n)!*polcoef(polcoef(exp(sum(k=1, 2*n, (1+t)*sigma(k)*(x^k+x*O(x^(2*n)))/k)), 2*n), n))}

Formula

a(n) = A210590(2*n, n) = (-1)^n * A234937(2*n, n).

A298321 The Nekrasov-Okounkov sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 3, 8, 6, 9, 8, 9, 12, 13, 11, 13, 12, 16, 18, 19, 18, 19, 21, 22, 22, 24, 24, 27, 25, 26, 29, 28, 31, 33, 32, 34, 32, 37, 35, 36, 37, 38, 42, 42, 41, 42, 43, 46, 48, 48, 45, 48, 50, 53, 54, 54, 51, 56, 56, 55, 58, 59, 60, 62, 62, 62
Offset: 1

Views

Author

Kenta Suzuki, Jan 17 2018

Keywords

Comments

a(n) is the degree in terms of z of the coefficient of x^n's highest degree irreducible factor in Product_{m>=1} (1-x^m)^(z-1). This can be calculated by reducing the polynomial in the Nekrasov-Okounkov formula.

Examples

			For n = 5, a(n) = 2 because the coefficient of x^5 is Product_{m>=1} (1-x^m)^(z-1). This can be factorized as -(z-7)*(z-4)*(z-1)*(z^2 -23*z + 30)/120.
		

Crossrefs

Programs

  • Julia
    using Nemo
    function A298321(len)
        R, z = PolynomialRing(ZZ, 'z')
        Q = [R(1)]; S = [1, 1, 1, 1]
        for n in 1:len-4
            p = z*sum(sigma(ZZ(k), 1)*risingfac(n-k+1, k-1)*Q[n-k+1] for k in 1:n)
            push!(Q, p)
            for (f, m) in factor(p)
                deg = degree(f)
                deg > 1 && push!(S, deg)
            end
        end
    S end
    A298321(72) |> println # Peter Luschny, Oct 27 2018, after Vincent Delecroix
    
  • Mathematica
    (* This naive program is not suitable to compute a large number of terms *) a[n_] := a[n] = SeriesCoefficient[Product[(1-x^m)^(z-1), {m, 1, n}], {x, 0, n}] // Factor // Last // Exponent[#, z]&;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 18 2019 *)
  • PARI
    {a(n) = vecmax(apply(x->poldegree(x), factor(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(z-1)), n))[, 1]))} \\ Seiichi Manyama, Nov 07 2020

Extensions

More terms from Vincent Delecroix, Oct 05 2018
Showing 1-3 of 3 results.