cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A338755 Central coefficients of number triangle A210590.

Original entry on oeis.org

1, 5, 119, 5205, 324569, 26519745, 2681170547, 323104570789, 45224035123553, 7211322045457101, 1290620989042420815, 256193650031596282005, 55863607060241676345961, 13273922770286234753307065, 3413846723448521483558054235, 944832714523233697801280445525, 280003865538498845896076940256065
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2020

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = my(t='t); (2*n)!*polcoef(polcoef(prod(k=1, 2*n, (1-x^k+x*O(x^(2*n)))^(-1-t)), 2*n), n)}
    
  • PARI
    {a(n) = my(t='t); if(n==0, 1, (2*n)!*polcoef(polcoef(exp(sum(k=1, 2*n, (1+t)*sigma(k)*(x^k+x*O(x^(2*n)))/k)), 2*n), n))}

Formula

a(n) = A210590(2*n, n) = (-1)^n * A234937(2*n, n).

A008298 Triangle of D'Arcais numbers.

Original entry on oeis.org

1, 3, 1, 8, 9, 1, 42, 59, 18, 1, 144, 450, 215, 30, 1, 1440, 3394, 2475, 565, 45, 1, 5760, 30912, 28294, 9345, 1225, 63, 1, 75600, 293292, 340116, 147889, 27720, 2338, 84, 1, 524160, 3032208, 4335596, 2341332, 579369, 69552, 4074, 108, 1, 6531840, 36290736, 57773700, 38049920, 11744775, 1857513, 154350, 6630, 135, 1
Offset: 1

Views

Author

Keywords

Comments

Also the Bell transform of A038048(n+1) and the inverse Bell transform of A180563(n+1) (adding 1,0,0,.. as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Named after the Italian mathematician Francesco Flores D'Arcais (1849-1927). - Amiram Eldar, Jun 13 2021

Examples

			exp(Sum_{n>0} sigma(n)*u*x^n/n) = 1+u*x/1!+(3*u+u^2)*x^2/2!+(8*u+9*u^2+u^3)*x^3/3!+(42*u+59*u^2+18*u^3+u^4)*x^4/4!+...
Triangle starts:
      1:
      3,      1;
      8,      9,      1;
     42,     59,     18,      1;
    144,    450,    215,     30,     1;
   1440,   3394,   2475,    565,    45,    1;
   5760,  30912,  28294,   9345,  1225,   63,  1;
  75600, 293292, 340116, 147889, 27720, 2338, 84, 1;
  ...
T(4; u) = 4!*(binomial(u+3,4) + binomial(u+1,2)*binomial(u,1) + binomial(u+1,2) + binomial(u,1)^2 + binomial(u,1)) = 42*u+59*u^2+18*u^3+u^4.
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.
  • F. D'Arcais, Développement en série, Intermédiaire Math., Vol. 20 (1913), pp. 233-234.

Crossrefs

Column k=1..3 give A038048, A059356, A059357.
Row sums give A053529.

Programs

  • Maple
    P := proc(n): if n=0 then 1 else P(n):= (1/n)*(add(x(n-k) * P(k), k=0..n-1)) fi; end: with(numtheory): x := proc(n): sigma(n) * x end: Q := proc(n): n!*P(n) end: T := proc(n, k): coeff(Q(n), x, k) end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, Jul 08 2016
  • Mathematica
    t[0][u_] = 1; t[n_][u_] := t[n][u] = Sum[(n-1)!/(n-k)!*DivisorSigma[1, k]*u*t[n-k][u], {k, 1, n}]; row[n_] := CoefficientList[ t[n][u], u] // Rest; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 03 2012, after Vladeta Jovovic *)
  • PARI
    row(n)={local(P(n)=if(n,sum(k=0,n-1,sigma(n-k)*x*P(k))/n,1)); Vecrev(P(n)*n!/x)} \\ T(n,k)=row(n)[k]. - M. F. Hasler, Jul 13 2016
    
  • PARI
    a(n) = if(n<1, 0, (n-1)!*sigma(n));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1))) \\ Seiichi Manyama, Nov 08 2020 after Peter Luschny
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    print(bell_matrix(lambda n: A038048(n+1), 9)) # Peter Luschny, Jan 19 2016
    

Formula

G.f.: Sum_{1<=k<=n} T(n, k)*u^k*t^n/n! = ((1-t)*(1-t^2)*(1-t^3)...)^(-u).
Recurrence for degree n D'Arcais polynomials T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = Sum_{k=1..n} (n-1)!/(n-k)!*sigma(k)*u*T(n-k; u), T(0; u) = 1. - Vladeta Jovovic, Oct 11 2002
T(n; u) = n!*Sum_{pi} Product_{i=1..n} binomial(u+k(i)-1, k(i)) where pi runs through all nonnegative solutions of k(1)+2*k(2)+..+n*k(n)=n. - Vladeta Jovovic, Oct 11 2002
E.g.f.: exp(Sum_{n>0} sigma(n)*u*x^n/n), where sigma(n)=A000203(n). - Vladeta Jovovic, Jan 10 2003
T(n, k) = coeff(n!*P(n), x^k), n >= 1 and 1 <= k <= n, with P(n) = (1/n)*Sum_{k=0..n-1} sigma(n-k)*P(k)*x for n >= 1 and P(n=0) = 1. See A036039. - Johannes W. Meijer, Jul 08 2016
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} sigma(i_j)/i_j. - Seiichi Manyama, Nov 09 2020.

Extensions

More terms from Vladeta Jovovic, Dec 28 2001

A057623 a(n) = n! * (sum of reciprocals of all parts in unrestricted partitions of n).

Original entry on oeis.org

1, 5, 29, 218, 1814, 18144, 196356, 2427312, 32304240, 475637760, 7460546400, 127525829760, 2302819079040, 44659367020800, 911770840108800, 19784985947596800, 449672462639769600, 10790180876185804800, 270071861749240320000, 7094011359005190144000
Offset: 1

Views

Author

Leroy Quet, Oct 09 2000

Keywords

Examples

			The unrestricted partitions of 3 are 1 + 1 + 1, 1 + 2 and 3. So a(3) = 3! *(1 + 1 + 1 + 1 + 1/2 + 1/3) = 29.
		

Crossrefs

Column 1 of A210590.
Cf. A103738.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, (p-> p+[0, p[1]/i])(b(n-i, i)))))
        end:
    a:= n-> n!*b(n$2)[2]:
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 11 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[ {p}, p + {0, p[[1]]/i}][b[n-i, i]]]]]; a[n_] := n!*b[n, n][[2]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    Table[n!*Sum[DivisorSigma[1, k]*PartitionsP[n - k]/k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, May 29 2018 *)
  • Maxima
    S(n,m):=(if n=m then 1 else if nVladimir Kruchinin, Sep 10 2014 */
    
  • PARI
    {a(n) = my(t='t); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-1-t)), n), 1)} \\ Seiichi Manyama, Nov 07 2020

Formula

n! *sum_{k=1 to n} [sigma(k) p(n-k) /k], where sigma(n) = sum of positive divisors of n and p(n) = number of unrestricted partitions of n.
a(n) = P(n,1), where P(n,m) = P(n,m+1)+S(n-m,m)*n!/m+n!/(n-m)!*P(n-m,m)), P(n,n)=(n-1)!, P(n,m)=0 for m>n, S(n,m) is triangle of A026807. - Vladimir Kruchinin, Sep 10 2014

A234937 Triangle read by rows of coefficients of polynomials generated by the Han/Nekrasov-Okounkov formula.

Original entry on oeis.org

1, 1, -1, 4, -5, 1, 18, -29, 12, -1, 120, -218, 119, -22, 1, 840, -1814, 1285, -345, 35, -1, 7920, -18144, 14674, -5205, 805, -51, 1, 75600, -196356, 185080, -79219, 16450, -1624, 70, -1, 887040, -2427312, 2515036, -1258628, 324569, -43568, 2954, -92, 1
Offset: 0

Views

Author

William J. Keith, Jan 01 2014

Keywords

Comments

Coefficients of the polynomials p_n(b) defined by Product_{k>0} (1-q^k)^(b-1) = Sum n! p_n(b) q^n.
Each row is length 1+n, starting from n=0, and consists of the coefficients of one of the p_n(b).
A210590 is an unsigned version using the form preferred by Nekrasov and Okounkov. This is the form for which Guo-Niu Han's reference below gives the hooklength formula:
p_n(b) = Sum_{lambda partitioning n} Product_{h_{ij} in lambda} (1-b/(h_{ij}^2)).
Coefficients reduced mod 5 are those of 2 times Pascal's triangle and an alternating sign. Other primes have slightly more complex reduction behavior. See second link.
Lehmer's conjecture on the tau function states that the evaluation at b=25 (A000594) is never 0.
The general diagonal and column are probably of combinatorial interest.

Examples

			The coefficient of q^3 in the indeterminate power is (1/6) (18-29b+12b^2-b^3).
		

Crossrefs

Row entries sum to 0.
A210590 is the unsigned version.
Starting from row 0: final entry of row n, (-1)^n (A033999).
From row 1: next-to-last entry of row n, (-1)^(n-1) * n(3n-1)/2 (signed version of A000326).
First entry of row n, n! * p(n) (A053529).
Second entry of row n, -1 * n! * (sum of reciprocals of all parts in partitions of n) (negatives of A057623).
(Sum of absolute values of row entries)/n!: A000712.
Evaluations at various powers of b, divided by n!, enumerate multipartitions or powers of the eta function. Some special cases that appear in the OEIS:
b=0: A000041, the partition numbers,
b=2: A010815, from Euler's Pentagonal Number Theorem,
b=-1: A000712, partitions into 2 colors,
b=-11: A005758, reciprocal of the square root of the tau function,
b=-23: A006922, reciprocal of the tau function,
b=13: A000735, square root of the tau function,
b=25: A000594, Ramanujan's tau function.

Programs

  • Mathematica
    nn=10;
    Clear[b]; PolyTable = Table[0, {n, 1, nn}];
    PolyTable[[1]]=1-b;
    For[n = 2, n <= nn, n++,
    PolyTable[[n]] = Simplify[(((n - 1)!)*(b - 1))*(Sum[
           PolyTable[[n - m]]*(-1*DivisorSigma[1, m]/((n - m)!)), {m, 1,
            n - 1}] + (-1*DivisorSigma[1, n]))]];
    LongTable = Table[Table[
       Which[k == 0, PartitionsP[n]*n!, k > 0,
        Coefficient[Expand[PolyTable[[n]]], b^k]], {k, 0, n}], {n, 1, nn}];
    Flatten[PrependTo[LongTable,1]]

Formula

E.g.f.: Product_{k>0} (1-q^k)^(b-1).
Recurrence: With p_0(b) = 1, p_n(b) = (n-1)!*(b-1)*Sum_{m=1..n} -sigma(m)*p_{n-m}(b) / (n-m)!, sigma being the divisor function.

A298321 The Nekrasov-Okounkov sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 3, 8, 6, 9, 8, 9, 12, 13, 11, 13, 12, 16, 18, 19, 18, 19, 21, 22, 22, 24, 24, 27, 25, 26, 29, 28, 31, 33, 32, 34, 32, 37, 35, 36, 37, 38, 42, 42, 41, 42, 43, 46, 48, 48, 45, 48, 50, 53, 54, 54, 51, 56, 56, 55, 58, 59, 60, 62, 62, 62
Offset: 1

Views

Author

Kenta Suzuki, Jan 17 2018

Keywords

Comments

a(n) is the degree in terms of z of the coefficient of x^n's highest degree irreducible factor in Product_{m>=1} (1-x^m)^(z-1). This can be calculated by reducing the polynomial in the Nekrasov-Okounkov formula.

Examples

			For n = 5, a(n) = 2 because the coefficient of x^5 is Product_{m>=1} (1-x^m)^(z-1). This can be factorized as -(z-7)*(z-4)*(z-1)*(z^2 -23*z + 30)/120.
		

Crossrefs

Programs

  • Julia
    using Nemo
    function A298321(len)
        R, z = PolynomialRing(ZZ, 'z')
        Q = [R(1)]; S = [1, 1, 1, 1]
        for n in 1:len-4
            p = z*sum(sigma(ZZ(k), 1)*risingfac(n-k+1, k-1)*Q[n-k+1] for k in 1:n)
            push!(Q, p)
            for (f, m) in factor(p)
                deg = degree(f)
                deg > 1 && push!(S, deg)
            end
        end
    S end
    A298321(72) |> println # Peter Luschny, Oct 27 2018, after Vincent Delecroix
    
  • Mathematica
    (* This naive program is not suitable to compute a large number of terms *) a[n_] := a[n] = SeriesCoefficient[Product[(1-x^m)^(z-1), {m, 1, n}], {x, 0, n}] // Factor // Last // Exponent[#, z]&;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 18 2019 *)
  • PARI
    {a(n) = vecmax(apply(x->poldegree(x), factor(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(z-1)), n))[, 1]))} \\ Seiichi Manyama, Nov 07 2020

Extensions

More terms from Vincent Delecroix, Oct 05 2018
Showing 1-5 of 5 results.