Original entry on oeis.org
1, 9, 59, 450, 3394, 30912, 293292, 3032208, 36290736, 433762560, 5925016800, 83648747520, 1335385128960, 20323375994880, 376785057196800, 6493118120294400, 132672192555571200, 2513351450024755200, 56577426980420505600, 1188283280226545664000, 29682641812682686464000, 658094690655791972352000
Offset: 2
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.
-
nmax = 30; Table[n!/2 * Sum[DivisorSigma[1, k] * DivisorSigma[1, n-k] / k / (n-k), {k, 1, n-1}], {n, 2, nmax}] (* Vaclav Kotesovec, Nov 09 2020 *)
-
{a(n) = my(t='t); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-t)), n), 2)} \\ Seiichi Manyama, Nov 07 2020
-
{a(n)= (n-1)!*sum(k=1, n-1, sigma(k)*sigma(n-k)/k)} \\ Seiichi Manyama, Nov 09 2020
-
{a(n)= n!*sum(k=1, n-1, sigma(k)*sigma(n-k)/(k*(n-k)))/2} \\ Seiichi Manyama, Nov 09 2020
Original entry on oeis.org
1, 18, 215, 2475, 28294, 340116, 4335596, 57773700, 831170736, 12532005288, 201002619168, 3401283910752, 60929911689984, 1143429812726400, 22572470529457920, 468013463441475840, 10124124979606179840
Offset: 3
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.
-
nmax = 20; Table[n!/6 * Sum[Sum[Sum[If[i + j + k == n, DivisorSigma[1,i] * DivisorSigma[1,j] * DivisorSigma[1,k] / (i*j*k), 0], {k, 1, n}], {j, 1, n}], {i, 1, n}], {n, 3, nmax}] (* Vaclav Kotesovec, Nov 09 2020 *)
-
{a(n) = my(t='t); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-t)), n), 3)} \\ Seiichi Manyama, Nov 07 2020
A078521
Signed triangle of D'Arcais numbers (A008298) : coefficients of r in the polynomials generated by the series coefficients of z^n in Product[(1-z^k)^r, {k,1,Inf}]*(n!).
Original entry on oeis.org
1, 0, -1, 0, -3, 1, 0, -8, 9, -1, 0, -42, 59, -18, 1, 0, -144, 450, -215, 30, -1, 0, -1440, 3394, -2475, 565, -45, 1, 0, -5760, 30912, -28294, 9345, -1225, 63, -1, 0, -75600, 293292, -340116, 147889, -27720, 2338, -84, 1, 0, -524160, 3032208, -4335596, 2341332, -579369, 69552, -4074, 108, -1, 0, -6531840
Offset: 1
The z-expansion of Product[(1-z^k)^r, {k,1,3}] is 1 - r*z + ((-3+r)*r*z^2)/2 -(r*(8-9*r +r^2)*z^3)/6, so the third row of the triangle is 0,-8,9,-1.
Triangle begins
1,
0, -1,
0, -3, 1,
0, -8, 9, -1,
0, -42, 59, -18, 1,
0, -144, 450, -215, 30, -1,
0, -1440, 3394, -2475, 565, -45, 1,
0, -5760, 30912, -28294, 9345, -1225, 63, -1,
0, -75600, 293292, -340116, 147889, -27720, 2338, -84, 1
...
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> -n!*numtheory:-sigma(n+1), 9); # Peter Luschny, Jan 26 2016
# Alternative:
P := proc(n, x) option remember; if n = 0 then 1 else
-(1/n)*x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end:
Trow := n -> seq(n!*coeff(P(n, x), x, k), k=0..n):
seq(Trow(n), n=0..9); # Peter Luschny, Oct 03 2018
-
w=16;(CoefficientList[ #, r]&/@ CoefficientList[Series[Product[(1-z^k)^r, {k, 1, w}], {z, 0, w}], z])Range[0, w]!
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, -n!*DivisorSigma[1, n + 1]], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
A038048
a(n) = (n-1)! * sigma(n).
Original entry on oeis.org
1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
Offset: 1
a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).
- T. D. Noe, Table of n, a(n) for n = 1..100
- Xiaojun Liu, Motohico Mulase, Adam Sorkin, Quantum curves for simple Hurwitz numbers of an arbitrary base curve, arXiv:1304.0015 [math.AG], 2013.
- H. Ochiai, Counting functions for branched covers of elliptic curves and quasi-modular forms, arXiv:math-ph/9909023, 1999.
-
a := n -> n!*add(1/j, j=numtheory:-divisors(n)): seq(a(n), n=1..23); # Emeric Deutsch, Jul 24 2005
-
a[n_] := (n-1)!*DivisorSigma[1, n]; Table[a[n], {n, 20}] (* Jean-François Alcover, Mar 23 2011 *)
-
a(n)=(n-1)!*sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
-
A038048 = lambda n: factorial(n-1)*sigma(n,1)
[A038048(n) for n in (1..20)] # Peter Luschny, Jan 19 2016
A319083
Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 7, 17, 9, 1, 0, 6, 38, 39, 12, 1, 0, 12, 70, 120, 70, 15, 1, 0, 8, 116, 300, 280, 110, 18, 1, 0, 15, 185, 645, 885, 545, 159, 21, 1, 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1, 0, 18, 384, 2262, 5586, 6713, 4281, 1498, 284, 27, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 3, 1;
[3] 0, 4, 6, 1;
[4] 0, 7, 17, 9, 1;
[5] 0, 6, 38, 39, 12, 1;
[6] 0, 12, 70, 120, 70, 15, 1;
[7] 0, 8, 116, 300, 280, 110, 18, 1;
[8] 0, 15, 185, 645, 885, 545, 159, 21, 1;
[9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1;
-
P := proc(n, x) option remember; if n = 0 then 1 else
x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
seq(Trow(n), n=0..9);
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Feb 01 2021
# Uses function PMatrix from A357368.
PMatrix(10, NumberTheory:-sigma); # Peter Luschny, Oct 19 2022
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, DivisorSigma[1, n]],
With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)
A075525
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*t^n/n! = ((1+t)*(1+t^2)*(1+t^3)...)^u.
Original entry on oeis.org
1, 1, 1, 8, 3, 1, 6, 35, 6, 1, 144, 110, 95, 10, 1, 480, 1594, 585, 205, 15, 1, 5760, 8064, 8974, 1995, 385, 21, 1, 5040, 125292, 70252, 35329, 5320, 658, 28, 1, 524160, 684144, 1178540, 392364, 110649, 12096, 1050, 36, 1, 2177280, 14215536, 10683180, 7260560, 1630125, 295113, 24570, 1590, 45, 1
Offset: 1
Triangle begins:
1;
1, 1;
8, 3, 1;
6, 35, 6, 1;
144, 110, 95, 10, 1;
480, 1594, 585, 205, 15, 1;
5760, 8064, 8974, 1995, 385, 21, 1;
5040, 125292, 70252, 35329, 5320, 658, 28, 1;
...
exp(Sum_{n>0} u*A000593(n)*t^n/n) = 1 + u*t/1! + (u+u^2)*t^2/2! + (8*u+3*u^2+u^3)*t^3/3! + (6*u+35*u^2+6*u^3+u^4)*t^4/4! + ... - _Seiichi Manyama_, Nov 08 2020.
-
# Adds (1,0,0,0,...) as row 0.
seq(PolynomialTools[CoefficientList](n!*coeff(series(mul((1+z^k)^u, k=1..20),z,20),z,n),u), n=0..9); # Peter Luschny, Jan 26 2016
-
T[n_, k_] := n! SeriesCoefficient[(Times @@ (1 + t^Range[n]))^u, {t, 0, n}, {u, 0, k}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 04 2019 *)
-
a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)*n/d));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1))) \\ Seiichi Manyama, Nov 08 2020 after Peter Luschny
-
# uses[bell_matrix from A264428]
# Adds (1,0,0,0,..) as row 0.
d = lambda n: sum((-1)^(d+1)*n/d for d in divisors(n))
bell_matrix(lambda n: factorial(n)*d(n+1), 9) # Peter Luschny, Jan 26 2016
A274760
The multinomial transform of A001818(n) = ((2*n-1)!!)^2.
Original entry on oeis.org
1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0
Some a(n) formulas, see A036039:
a(0) = 1
a(1) = 1*x(1)
a(2) = 1*x(2) + 1*x(1)^2
a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, arXiv:math/0205301 [math.CO], 2002; Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
-
nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
-
b[n_] := (2*n - 1)!!^2;
a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)
A338805
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1-x^j)^(-u/j).
Original entry on oeis.org
1, 2, 1, 4, 6, 1, 18, 28, 12, 1, 48, 170, 100, 20, 1, 480, 988, 870, 260, 30, 1, 1440, 7896, 7588, 3150, 560, 42, 1, 20160, 60492, 73808, 37408, 9100, 1064, 56, 1, 120960, 555264, 764524, 460656, 140448, 22428, 1848, 72, 1, 1451520, 5819904, 8448120, 5952700, 2162160, 436296, 49140, 3000, 90, 1
Offset: 1
exp(Sum_{n>0} u*d(n)*x^n/n) = 1 + u*x + (2*u+u^2)*x^2/2! + (4*u+6*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
2, 1;
4, 6, 1;
18, 28, 12, 1;
48, 170, 100, 20, 1;
480, 988, 870, 260, 30, 1;
1440, 7896, 7588, 3150, 560, 42, 1;
20160, 60492, 73808, 37408, 9100, 1064, 56, 1;
-
# The function BellMatrix is defined in A264428 (with column k = 0).
BellMatrix(n -> n!*NumberTheory:-SumOfDivisors(n+1, 0), 9);
# Alternative:
P := proc(n, x) option remember; if n = 0 then 1 else
(1/n)*x*add(NumberTheory:-SumOfDivisors(n-k, 0)*P(k, x), k=0..n-1) fi end:
Trow := n -> seq(n!*coeff(P(n, x), x, k), k = 1..n):
seq(Trow(n), n = 0..10); # Peter Luschny, Jun 01 2022
-
a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSigma[0, n]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1-x^j+x*O(x^n))^(-u/j)), n), k)}
-
a(n) = if(n<1, 0, (n-1)!*numdiv(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
A338871
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = exp(Sum_{n>0} u*sigma(n)*x^n/n!).
Original entry on oeis.org
1, 3, 1, 4, 9, 1, 7, 43, 18, 1, 6, 155, 175, 30, 1, 12, 511, 1230, 485, 45, 1, 8, 1442, 7231, 5600, 1085, 63, 1, 15, 4131, 37870, 52381, 18550, 2114, 84, 1, 13, 10323, 181063, 426006, 253281, 50022, 3738, 108, 1, 18, 28171, 818760, 3128245, 2956065, 937587, 116760, 6150, 135, 1
Offset: 1
exp(Sum_{n>0} u*sigma(n)*x^n/n!) = 1 + u*x + (3*u+u^2)*x^2/2! + (4*u+9*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
3, 1;
4, 9, 1;
7, 43, 18, 1;
6, 155, 175, 30, 1;
12, 511, 1230, 485, 45, 1;
8, 1442, 7231, 5600, 1085, 63, 1;
15, 4131, 37870, 52381, 18550, 2114, 84, 1;
...
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * DivisorSigma[1, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
a(n) = if(n<1, 0, sigma(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
A338865
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} ( exp(j*x^j/(1 - x^j)) )^u.
Original entry on oeis.org
1, 6, 1, 24, 18, 1, 168, 204, 36, 1, 720, 2280, 780, 60, 1, 8640, 25200, 14400, 2100, 90, 1, 40320, 292320, 252000, 58800, 4620, 126, 1, 604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1, 4717440, 46811520, 76265280, 35743680, 6335280, 474768, 15624, 216, 1
Offset: 1
exp(Sum_{n>0} u*sigma(n)*x^n) = 1 + u*x + (6*u+u^2)*x^2/2! + (24*u+18*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
6, 1;
24, 18, 1;
168, 204, 36, 1;
720, 2280, 780, 60, 1;
8640, 25200, 14400, 2100, 90, 1;
40320, 292320, 252000, 58800, 4620, 126, 1;
604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1;
...
Column k=1..2 give n! * sigma(n), (n!/2) *
A000385(n-1).
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * j! * DivisorSigma[1, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, exp(j*x^j/(1-x^j+x*O(x^n)))^u), n), k)}
-
a(n) = if(n<1, 0, n!*sigma(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
Showing 1-10 of 11 results.
Comments