cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A319083 Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 7, 17, 9, 1, 0, 6, 38, 39, 12, 1, 0, 12, 70, 120, 70, 15, 1, 0, 8, 116, 300, 280, 110, 18, 1, 0, 15, 185, 645, 885, 545, 159, 21, 1, 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1, 0, 18, 384, 2262, 5586, 6713, 4281, 1498, 284, 27, 1
Offset: 0

Views

Author

Peter Luschny, Oct 03 2018

Keywords

Comments

Column k is the k-fold self-convolution of sigma (A000203). - Alois P. Heinz, Feb 01 2021
For fixed k, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - Vaclav Kotesovec, Sep 20 2024

Examples

			Triangle starts:
[0] 1;
[1] 0,  1;
[2] 0,  3,   1;
[3] 0,  4,   6,    1;
[4] 0,  7,  17,    9,    1;
[5] 0,  6,  38,   39,   12,    1;
[6] 0, 12,  70,  120,   70,   15,   1;
[7] 0,  8, 116,  300,  280,  110,  18,   1;
[8] 0, 15, 185,  645,  885,  545, 159,  21,  1;
[9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1;
		

Crossrefs

Columns k=0..6 give: A000007, A000203, A000385, A374951, A374977, A374978, A374979.
Row sums are A180305.
T(2n,n) gives A340993.

Programs

  • Maple
    P := proc(n, x) option remember; if n = 0 then 1 else
    x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end:
    Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
    seq(Trow(n), n=0..9);
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 01 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, NumberTheory:-sigma); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
         If[k == 1, If[n == 0, 0, DivisorSigma[1, n]],
         With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)

Formula

The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by
p(n, x) = x*Sum_{k=0..n-1} sigma(n-k)*p(k, x).
Sum_{k=0..n} (-1)^k * T(n,k) = A283334(n). - Alois P. Heinz, Feb 07 2025

A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Comments

The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.

Examples

			[ 0] 1,   0,   0,    0,     0,    0,     0,     0,     0,     0, ... A000007
[ 1] 1,  -1,  -1,    0,     0,    1,     0,     1,     0,     0, ... A010815
[ 2] 1,  -2,  -1,    2,     1,    2,    -2,     0,    -2,    -2, ... A002107
[ 3] 1,  -3,   0,    5,     0,    0,    -7,     0,     0,     0, ... A010816
[ 4] 1,  -4,   2,    8,    -5,   -4,   -10,     8,     9,     0, ... A000727
[ 5] 1,  -5,   5,   10,   -15,   -6,    -5,    25,    15,   -20, ... A000728
[ 6] 1,  -6,   9,   10,   -30,    0,    11,    42,     0,   -70, ... A000729
[ 7] 1,  -7,  14,    7,   -49,   21,    35,    41,   -49,  -133, ... A000730
[ 8] 1,  -8,  20,    0,   -70,   64,    56,     0,  -125,  -160, ... A000731
[ 9] 1,  -9,  27,  -12,   -90,  135,    54,   -99,  -189,   -85, ... A010817
[10] 1, -10,  35,  -30,  -105,  238,     0,  -260,  -165,   140, ... A010818
    A001489,  v , A167541, v , A319931,  v ,         diagonal: A008705
           A080956       A319930      A319932
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.

Crossrefs

Transpose of A286354.
Cf. A078521, A319574 (JacobiTheta3).

Programs

  • Julia
    # DedekindEta is defined in A000594
    for n in 0:10
        DedekindEta(10, n) |> println
    end
  • Maple
    DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
    A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
    seq(coeff(%, x, j), j=0..len-1) end:
    seq(print([n], A319933row(n, 10)), n=0..10);
  • Mathematica
    eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
    A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Sage
    from sage.modular.etaproducts import qexp_eta
    def A319933row(n, len):
        return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
    for n in (0..10):
        print(A319933row(n, 10))
    
Showing 1-2 of 2 results.