cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319083 Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 7, 17, 9, 1, 0, 6, 38, 39, 12, 1, 0, 12, 70, 120, 70, 15, 1, 0, 8, 116, 300, 280, 110, 18, 1, 0, 15, 185, 645, 885, 545, 159, 21, 1, 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1, 0, 18, 384, 2262, 5586, 6713, 4281, 1498, 284, 27, 1
Offset: 0

Views

Author

Peter Luschny, Oct 03 2018

Keywords

Comments

Column k is the k-fold self-convolution of sigma (A000203). - Alois P. Heinz, Feb 01 2021
For fixed k, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - Vaclav Kotesovec, Sep 20 2024

Examples

			Triangle starts:
[0] 1;
[1] 0,  1;
[2] 0,  3,   1;
[3] 0,  4,   6,    1;
[4] 0,  7,  17,    9,    1;
[5] 0,  6,  38,   39,   12,    1;
[6] 0, 12,  70,  120,   70,   15,   1;
[7] 0,  8, 116,  300,  280,  110,  18,   1;
[8] 0, 15, 185,  645,  885,  545, 159,  21,  1;
[9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1;
		

Crossrefs

Columns k=0..6 give: A000007, A000203, A000385, A374951, A374977, A374978, A374979.
Row sums are A180305.
T(2n,n) gives A340993.

Programs

  • Maple
    P := proc(n, x) option remember; if n = 0 then 1 else
    x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end:
    Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
    seq(Trow(n), n=0..9);
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 01 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, NumberTheory:-sigma); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
         If[k == 1, If[n == 0, 0, DivisorSigma[1, n]],
         With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)

Formula

The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by
p(n, x) = x*Sum_{k=0..n-1} sigma(n-k)*p(k, x).
Sum_{k=0..n} (-1)^k * T(n,k) = A283334(n). - Alois P. Heinz, Feb 07 2025

A319930 a(n) = (1/24)*n*(n - 1)*(n - 3)*(n - 14).

Original entry on oeis.org

0, 0, 1, 0, -5, -15, -30, -49, -70, -90, -105, -110, -99, -65, 0, 105, 260, 476, 765, 1140, 1615, 2205, 2926, 3795, 4830, 6050, 7475, 9126, 11025, 13195, 15660, 18445, 21576, 25080, 28985, 33320, 38115, 43401, 49210, 55575, 62530, 70110, 78351, 87290, 96965
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Crossrefs

Cf. A000012 (m=0), A001489 (m=1), A080956 (m=2), A167541 (m=3), this sequence (m=4), A319931 (m=5), A319932 (m=6).
Cf. A319933.

Programs

  • Maple
    a := n -> (1/24)*n*(n-1)*(n-3)*(n-14):
    seq(a(n), n=0..44);
  • Mathematica
    Table[(n(n-1)(n-3)(n-14))/24,{n,0,70}] (* Harvey P. Dale, Apr 29 2022 *)

Formula

a(n) = [x^4] DedekindEta(x)^n.
a(n) = A319933(n, 4).

A319931 a(n) = -(1/120)*n*(n - 3)*(n - 6)*(n^2 - 21*n + 8).

Original entry on oeis.org

0, 1, 2, 0, -4, -6, 0, 21, 64, 135, 238, 374, 540, 728, 924, 1107, 1248, 1309, 1242, 988, 476, -378, -1672, -3519, -6048, -9405, -13754, -19278, -26180, -34684, -45036, -57505, -72384, -89991, -110670, -134792, -162756, -194990, -231952, -274131, -322048, -376257
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Crossrefs

Cf. A000012 (m=0), A001489 (m=1), A080956 (m=2), A167541 (m=3), A319930 (m=4), this sequence (m=5), A319932 (m=6).
Cf. A319933.

Programs

  • Maple
    a := n -> -(1/120)*n*(n-3)*(n-6)*(n^2-21*n+8):
    seq(a(n), n=0..41);
  • PARI
    a(n)=-n*(n-3)*(n-6)*(n^2-21*n+8)/120 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = [x^5] DedekindEta(x)^n.
a(n) = A319933(n, 5).
From Chai Wah Wu, Jul 27 2022: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
G.f.: x*(-7*x^4 + 6*x^3 + 3*x^2 - 4*x + 1)/(x - 1)^6. (End)

A319932 a(n) = (1/720)*n*(n - 10)*(n - 1)*(n^3 - 34*n^2 + 181*n - 144).

Original entry on oeis.org

0, 0, -2, -7, -10, -5, 11, 35, 56, 54, 0, -143, -418, -871, -1547, -2485, -3712, -5236, -7038, -9063, -11210, -13321, -15169, -16445, -16744, -15550, -12220, -5967, 4158, 19285, 40745, 70091, 109120, 159896, 224774, 306425, 407862, 532467, 684019, 866723
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Crossrefs

Cf. A000012 (m=0), A001489 (m=1), A080956 (m=2), A167541 (m=3), A319930 (m=4), A319931 (m=5), this sequence (m=6).
Cf. A319933.

Programs

  • Maple
    a := n -> (1/720)*n*(n-10)*(n-1)*(n^3-34*n^2+181*n-144);
    seq(a(n), n=0..39);

Formula

a(n) = [x^5] DedekindEta(x)^n.
a(n) = A319933(n, 5).
Showing 1-4 of 4 results.