cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000385 Convolution of A000203 with itself.

Original entry on oeis.org

1, 6, 17, 38, 70, 116, 185, 258, 384, 490, 686, 826, 1124, 1292, 1705, 1896, 2491, 2670, 3416, 3680, 4602, 4796, 6110, 6178, 7700, 7980, 9684, 9730, 12156, 11920, 14601, 14752, 17514, 17224, 21395, 20406, 24590, 24556, 28920, 27860, 34112, 32186, 38674, 37994, 43980, 42136, 51646, 47772, 56749, 55500, 64316, 60606, 73420, 67956, 80500, 77760, 88860, 83810, 102284, 92690, 108752, 105236, 120777, 112672, 135120, 123046, 145194, 138656, 157512, 146580, 177515, 159396, 185744, 179122
Offset: 1

Views

Author

Keywords

Comments

Convolution of A340793 and A024916. - Omar E. Pol, Feb 17 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

Crossrefs

Column k=2 of A319083 (shifted).

Programs

  • Haskell
    a000385 n = sum $ zipWith (*) sigmas $ reverse sigmas where
       sigmas = take n a000203_list
    -- Reinhard Zumkeller, Sep 20 2011
    
  • Maple
    f:= n -> 5/12*numtheory:-sigma[3](n+1)-(5+6*n)/12*numtheory:-sigma(n+1):
    map(f, [$1..100]); # Robert Israel, Sep 17 2018
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, k] DivisorSigma[1, n-k+1], {k, 1, n}];
    Array[a, 100] (* Jean-François Alcover, Aug 01 2018 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)*sigma(n-k+1)); \\ Michel Marcus, Nov 10 2016
    
  • PARI
    a(n) = my(f = factor(n+1)); (5 * sigma(f, 3) - (6*n + 5) * sigma(f)) / 12; \\ Amiram Eldar, Jan 04 2025
    
  • Python
    from sympy import factorint
    def A000385(n):
        f = factorint(n+1).items()
        return(5*prod((p**(3*(e+1))-1)//(p**3-1) for p,e in f)-(5+6*n)*prod((p**(e+1)-1)//(p-1) for p, e in f))//12 # Chai Wah Wu, Jul 25 2024

Formula

a(n) = Sum_{k=1..n} A000203(k)*A000203(n-k+1).
G.f.: (1/x)*(Sum_{k>=1} k*x^k/(1 - x^k))^2. - Ilya Gutkovskiy, Nov 10 2016
a(5*n+1)==0 (mod 5) and a(7*n+6)==0 (mod 7). See Bonciocat link. - Michel Marcus, Nov 10 2016
a(n) = (5/12)*A001158(n+1) - ((5+6*n)/12)*A000203(n+1). - Robert Israel, Sep 17 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 864. - Vaclav Kotesovec, Apr 02 2019

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A180305 G.f.: 1/(1 + x*d/dx log(eta(x))), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.

Original entry on oeis.org

1, 1, 4, 11, 34, 96, 288, 833, 2456, 7175, 21054, 61633, 180674, 529220, 1550800, 4543446, 13312552, 39004278, 114281748, 334837511, 981059294, 2874447292, 8421986238, 24675963950, 72299290794, 211833080161, 620659794584, 1818500391218, 5328110328116, 15611082044176, 45739647180588, 134014753120706, 392656158141832
Offset: 0

Views

Author

Paul D. Hanna, Jan 18 2011

Keywords

Comments

INVERT transform of sigma (A000203). - Alois P. Heinz, Feb 11 2021

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 11*x^3 + 34*x^4 + 96*x^5 + 288*x^6 +...
eta(x)^3/A(x) = 1 - 4*x + 10*x^3 - 21*x^6 + 39*x^10 - 66*x^15 + 104*x^21 +...+ A184363(n)*x^n +...
1 + x*d/dx log(eta(x)) = 1 - x - 3*x^2 - 4*x^3 - 7*x^4 - 6*x^5 - 12*x^6 - 8*x^7 - 15*x^8 +...+ -sigma(n)*x^n +...
		

Crossrefs

Row sums of A319083.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*numtheory[sigma](i), i=1..n))
        end:
    seq(a(n), n=0..36);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 06 2017 *)
  • PARI
    {a(n)=polcoeff(1/(1+x*deriv(log(eta(x+x*O(x^n))))), n)}
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1,sigma(n-k)*a(k)))}
    
  • PARI
    N=66; x='x+O('x^N); Vec(1/(1 - sum(k=1,N, x^k/(1-x^k)^2))) \\ Joerg Arndt, Mar 09 2014

Formula

a(n) = Sum_{k=0,n-1} sigma(n-k)*a(k) for n>0 with a(0) = 1.
G.f.: 1/(1 - sum(k>=1, x^k/(1-x^k)^2)). [Joerg Arndt, Mar 09 2014]
a(n) ~ c * d^n, where d = 2.92994725111235280869138453465150817383965264075630759525007993985560038385... is the root of the equation Sum_{k>=1} sigma(k)/d^k = 1 and c = 0.45133473613134383104139698267531812019856702278773719486399141396046228911... - Vaclav Kotesovec, Jul 28 2018

A374951 a(n) = Sum_{i+j+k=n, i,j,k >= 1} sigma(i) * sigma(j) * sigma(k).

Original entry on oeis.org

0, 0, 1, 9, 39, 120, 300, 645, 1261, 2262, 3825, 6160, 9471, 14178, 20376, 28965, 39600, 54066, 71145, 94248, 120140, 155310, 193116, 244560, 297819, 370860, 443710, 544554, 641655, 778458, 904800, 1085445, 1248762, 1483308, 1688052, 1991515, 2244375, 2626380
Offset: 1

Views

Author

Seiichi Manyama, Jul 25 2024

Keywords

Crossrefs

Column k=3 of A319083.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 25 2024
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0],
       If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q,
       Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
    a[n_] := b[n, 3];
    Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 14 2025, after Alois P. Heinz *)
  • PARI
    my(N=40, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, k*x^k/(1-x^k))^3))
    
  • Python
    from sympy import divisor_sigma
    def A374951(n): return (60*sum(divisor_sigma(i)*divisor_sigma(n-i,3) for i in range(1,n))+divisor_sigma(n)*(9*n*(2*n-1)+1)-5*divisor_sigma(n,3)*(3*n-1))//144  # Chai Wah Wu, Jul 25 2024

Formula

G.f.: ( Sum_{k>=1} k * x^k/(1 - x^k) )^3 = ( Sum_{k>=1} x^k/(1 - x^k)^2 )^3.
a(n) = Sum_{i=1..n-2} sigma(i)*A000385(n-i-1). - Chai Wah Wu, Jul 25 2024
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / 155520. - Vaclav Kotesovec, Sep 19 2024

A374977 a(n) = Sum_{i+j+k+l=n, i,j,k,l >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l).

Original entry on oeis.org

0, 0, 0, 1, 12, 70, 280, 885, 2364, 5586, 12000, 23870, 44660, 79272, 134768, 220565, 349440, 538270, 807840, 1187004, 1706840, 2415150, 3354120, 4601870, 6209612, 8303610, 10935960, 14309640, 18460260, 23708184, 30044000, 37967925, 47368480, 59022432, 72633816
Offset: 1

Views

Author

Chai Wah Wu, Jul 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q, Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
    a[n_] := b[n, 4];
    Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Jul 11 2025, after Alois P. Heinz in A319083 *)
  • Python
    from sympy import divisor_sigma
    def A374977(n): return sum((5*divisor_sigma(i+1,3)-(5+6*i)*divisor_sigma(i+1))*(5*divisor_sigma(n-i-1,3)-(5+6*(n-i-2))*divisor_sigma(n-i-1)) for i in range(1,n-2))//144

Formula

4-fold convolution of A000203.
Convolution of A000203 and A374951.
Convolution of A000385 with itself.
a(n) = Sum_{i=1..n-1} A000203(i)*A374951(n-i).
a(n) = Sum_{i=1..n-3} A000385(i)*A000385(n-i-2).
Column k=4 of A319083.
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / 52254720. - Vaclav Kotesovec, Sep 20 2024

A283334 G.f.: 1/(1 - x*d/dx log(eta(x))), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.

Original entry on oeis.org

1, -1, -2, 1, 2, 4, -6, -5, 4, 1, 18, -13, -26, 4, 22, 66, -76, -78, 66, 37, 122, -136, -144, 10, 54, 599, -368, -746, 196, 568, 744, -938, -156, -312, -1428, 2720, 3340, -2324, -8588, 1520, 8814, 4846, 1380, -16565, -16966, -6324, 79170, 47250, -160346
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2017

Keywords

Examples

			G.f.: A(x) = 1 - x - 2*x^2 + x^3 + 2*x^4 + 4*x^5 - 6*x^6 - 5*x^7 + ...
1/A(x) = 1 - x*d/dx log(eta(x)) = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + ... + sigma(n)*x^n + ...
eta(x)^3/A(x) = 1 - 2*x + 7*x^6 - 21*x^10 + 44*x^15 - 78*x^21 + ... + A184366(n)*x^n + ...
		

Crossrefs

Cf. A180305 (1/(1 + x*d/dx log(eta(x)))), A184366, A319083.

Programs

  • PARI
    lista(nn) = {va = vector(nn); va[1] = 1; for (n=1, nn-1, va[n+1] = -sum(k=0, n-1, sigma(n-k)*va[k+1]);); va;} \\ Michel Marcus, Mar 05 2017

Formula

a(n) = -Sum_{k=0..n-1} sigma(n-k)*a(k) for n>0 with a(0) = 1.
G.f.: 1/(1 + Sum_{k>=1} k*x^k/(1 - x^k)). - Ilya Gutkovskiy, Oct 18 2018
a(n) = Sum_{k=0..n} (-1)^k * A319083(n,k). - Alois P. Heinz, Feb 07 2025

A320019 Coefficients of polynomials related to the number of divisors, triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 3, 8, 6, 1, 0, 2, 14, 18, 8, 1, 0, 4, 20, 41, 32, 10, 1, 0, 2, 28, 78, 92, 50, 12, 1, 0, 4, 37, 132, 216, 175, 72, 14, 1, 0, 3, 44, 209, 440, 490, 298, 98, 16, 1, 0, 4, 58, 306, 814, 1172, 972, 469, 128, 18, 1
Offset: 0

Views

Author

Peter Luschny, Oct 03 2018

Keywords

Comments

Column k is the k-fold self-convolution of tau (A000005). - Alois P. Heinz, Feb 01 2021

Examples

			Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2,  1
[3] 0, 2,  4,   1
[4] 0, 3,  8,   6,   1
[5] 0, 2, 14,  18,   8,   1
[6] 0, 4, 20,  41,  32,  10,   1
[7] 0, 2, 28,  78,  92,  50,  12,  1
[8] 0, 4, 37, 132, 216, 175,  72, 14,  1
[9] 0, 3, 44, 209, 440, 490, 298, 98, 16, 1
		

Crossrefs

Columns k=0-4 give: A000007, A000005, A055507, A191829, A375002.
Row sums are A129921.
T(2n,n) gives A340992.
Cf. A319083.

Programs

  • Maple
    P := proc(n, x) option remember; if n = 0 then 1 else
    x*add(numtheory:-tau(n-k)*P(k,x), k=0..n-1) fi end:
    Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
    seq(lprint([n], Trow(n)), n=0..9);
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[tau](n)), (q->
           add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 01 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, NumberTheory:-tau); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
         If[k == 1, If[n == 0, 0, DivisorSigma[0, n]],
         With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)

Formula

The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by
p(n, x) = x*Sum_{k=0..n-1} tau(n-k)*p(k, x).
Sigma[k](n) computes the sum of the k-th power of positive divisors of n. The recurrence applied with k = 0 gives this triangle, with k = 1 gives A319083.
T(n,k) = [x^n] (Sum_{j>=1} tau(j)*x^j)^k. - Alois P. Heinz, Feb 14 2021

A374978 a(n) = Sum_{i+j+k+l+m=n, i,j,k,l,m >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l)*sigma(m).

Original entry on oeis.org

0, 0, 0, 0, 1, 15, 110, 545, 2095, 6713, 18750, 47040, 108185, 231640, 467034, 894605, 1639680, 2891475, 4929660, 8155182, 13135080, 20651875, 31770970, 47923680, 70989801, 103454645, 148464520, 210155730, 293558265, 405325092, 553175000, 747508125, 999747750
Offset: 1

Views

Author

Chai Wah Wu, Jul 26 2024

Keywords

Comments

5-fold convolution of A000203.
Convolution of A000203 and A374977.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 26 2024
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q, Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
    a[n_] := b[n, 5];
    Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jul 11 2025, after Alois P. Heinz *)
  • Python
    from sympy import divisor_sigma
    def A374978(n): return sum(divisor_sigma(j)*sum((5*divisor_sigma(i+1,3)-(5+6*i)*divisor_sigma(i+1))*(5*divisor_sigma(n-j-i-1,3)-(5+6*(n-j-i-2))*divisor_sigma(n-j-i-1)) for i in range(1,n-j-2)) for j in range(1,n))//144

Formula

a(n) = Sum_{i=1..n-1} A000203(i)*A374977(n-i).
a(n) = Sum_{i=1..n-2} A000385(i)*A374951(n-i-1).
Column k=5 of A319083.
Sum_{k=1..n} a(k) ~ Pi^10 * n^10 / 28217548800. - Vaclav Kotesovec, Sep 20 2024

A340993 a(n) is the (2n)-th term of the n-fold self-convolution of the sum of divisors function sigma.

Original entry on oeis.org

1, 3, 17, 120, 885, 6713, 51932, 407214, 3224845, 25733325, 206584437, 1666561042, 13498994796, 109713432390, 894291885000, 7307812510970, 59847327807597, 491062976039618, 4036174402666925, 33224883837921930, 273873806179142545, 2260338391869532332
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1,
          `if`(k=1, numtheory[sigma](n+1), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);

Formula

a(n) = [x^(2n)] (Sum_{j>=1} sigma(j)*x^j)^n.
a(n) = A319083(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 8.455610430383829836198938524980234226695900064615457328971640722426861925... and c = 0.352126317954512592610958969393229871240824031029408304023118123356... - Vaclav Kotesovec, Jul 25 2024

A374979 a(n) = Sum_{i+j+k+l+m+r=n, i,j,k,l,m,r >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l)*sigma(m)*sigma(r).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 18, 159, 942, 4281, 16050, 51932, 149532, 391524, 947246, 2143677, 4581204, 9316195, 18138636, 33984912, 61534652, 108055425, 184582014, 307515038, 500798058, 798762453, 1249917936, 1921788036, 2907159804, 4332046200, 6365441400, 9232216725
Offset: 1

Views

Author

Chai Wah Wu, Jul 26 2024

Keywords

Comments

6-fold convolution of A000203.
Convolution of A000203 and A374978.
a(n) = Sum_{i=1..n-1} A000203(i)*A374978(n-i).
a(n) = Sum_{i=1..n-2} A000385(i)*A374977(n-i-1).
a(n) = Sum_{i=1..n-1} A374951(i)*A374951(n-i).
a(n) = Sum_{i+j+k=n-3, i,j,k>=1} A000385(i)*A000385(j)*A000385(k).
Column k=6 of A319083.
In general, if the sequence "a" is a k-fold convolution of A000203, then Sum_{k=1..n} a(k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - Vaclav Kotesovec, Sep 20 2024

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 26 2024
  • Python
    from functools import lru_cache
    from sympy import divisor_sigma
    def A374979(n):
        @lru_cache(maxsize=None)
        def g(x):
            f = factorint(x+1).items()
            return(5*prod((p**(3*(e+1))-1)//(p**3-1) for p,e in f)-(5+6*x)*prod((p**(e+1)-1)//(p-1) for p, e in f))//12
        return sum(g(i)*g(j)*g(n-3-i-j) for i in range(1,n-4) for j in range(1,n-i-3))

Formula

Sum_{k=1..n} a(k) ~ Pi^12 * n^12 / 22348298649600. - Vaclav Kotesovec, Sep 20 2024
Showing 1-9 of 9 results.